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1. Introduction

The gauge/string correspondence [1] continues to supply new and exciting perspectives for
nonperturbative QCD. By holographically relating strongly coupled gauge theories to physically
equivalent but weakly coupled string theories, it has provided new analytical tools which promise
to eventually describe large-Nc QCD in terms of a dual, classical string dynamics [2]. In order
to persue the long-term goal of determining this dynamics, current bottom-upapproaches, often
referred to as “AdS/QCD”, construct approximate holographic duals byincrementally encoding
known QCD properties (experimental and lattice data, low-energy theorems, the operator product
expansion etc.) into 5d gravity backgrounds. After implementing the most fundamental features,
i.e. conformal symmetry breaking, mass gap, quark confinement etc., one then increasingly incor-
porates information from the hadron spectrum and from more detailed amplitudes, and sets out to
find the gravitational dynamics which generates the obtained background as a solution.

The foundational ingredient of any AdS/QCD dual is the metric of its bulk spacetime. This
geometry contains a five-dimensional, non-compact part that takes the generic form of an IR-
deformed anti–de Sitter space AdS5(R) of curvature radiusR [3],

ds2 = g(AAdS5)
MN dXMdXN = e2A(z) R2

z2

(

ηµνdxµdxν −dz2) , (1.1)

whereηµν is the four-dimensional Minkowski metric of the 3+1 dimensional boundary on which
the gauge theory is defined. For an UV-conformal gauge theory like QCD, the metric has to ap-
proach AdS5 near the boundary. SinceA 6= 0 breaks conformal invariance explicitly, this amounts
to requiring thatA(z) → 0 asz→ 0. A minimal way of implementing the most crucial IR effects,
in particular conformal symmetry breaking and linear quark confinement, is toimpose a boundary
condition on the string modes at the IR brane of the “hard-wall” metric [3]

e2Ahw(z) = θ (zm−z) , zm = Λ−1
QCD (1.2)

wherezm acts as an infrared cutoff on the fifth dimension and generates both the massgap and dis-
crete hadron spectra. The rather drastic hard-wall approximation underlied all of the first bottom-up
duals and describes a surprising amount of hadron phenomenology [3,4]. Hence it provides a use-
ful benchmark for the development of improved holographic duals. The main limitations of the
current generation of AdS/QCD gravity duals are discussed e.g. in Refs. [5, 6].

2. The “metric soft-wall” dual and linear baryon trajectorie s

One of the most prominent and pervasive patterns in the known hadron spectrum consists of
linear Regge-type trajectories

M2 = M2
0 +W (N+L) (2.1)

with approximately universal slopesW∼ 1.1 GeV2 (for the light-quark mesonsandbaryons) [7] on
which the square massesM2 of excited states organize themselves in Chew-Frautschi plots, i.e. as
a function of both angular momentumL (or alternatively total spinJ) and radial excitation levelN.
The QCD-based understanding of these trajectories and their relation to linear quark confinement
remains one of the pre-eminent challenges of strong-interaction physics.
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A serious limitation of holographic duals based on the hard wall (1.2) is that they predict
quadratic instead of linear square-mass trajectories as a function ofJ, L and N (in the gravity
approximation) [4]. The first proposal for correcting this shortcoming,the “dilaton soft wall” dual
[8], generates linear Regge trajectoriesm2

N,J ∼N+J only in the meson but not in the baryon sector.
Baryon trajectories are similarly pronounced in the experimental data [7], however, which led us to
construct the “metric soft wall” [9], the so far only AdS/QCD dual which predicts linear trajectories
in the baryon sector as well. It further shows that (and partially explains why) universal-slope
trajectories (2.1) can be encoded solely into IR deformationsA(z).

The metric soft-wall dual is constructed with the help of those string mode fluctuations in
the general geometry (1.1) which are dual to the hadronic states under consideration. Casting the
wave equations for the “radial” components of the (normalizable) dual bulkmodes into the form of
Sturm-Liouville eigenvalue problems, one has

[

−∂ 2
z +VM (z)

]

ϕM (z) = M2
MϕM (z) (2.2)

for the modes dual to spin-0 (M = S) and spin-1 (M = V) mesons as well as

[

−∂ 2
z +VB,± (z)

]

ψ± (z) = M2
Bψ± (z) (2.3)

from the iterated equation for the chirally decomposed Dirac field

Ψ(x,z) =
∫

d4k

(2π)4e−ikx
[

ψ(k)
+ (z)P+ +ψ(k)

− (z)P−
]

Ψ̂(4) (k) (2.4)

(P± ≡
(

1± γ5
)

/2) dual to spin-1/2 baryons (wherêΨ(4) solves the 4d boundary Dirac equation)
and similarly for 3/2 baryons [4]. The eigenvaluesM2

M,B generate the mass spectra of the gauge
theory, and the potentials are

VS(z) =
3
2

[

A′′ +
3
2

A′2−3
A′

z
+

5
2

1
z2

]

+m2
5,SR2e2A

z2 , (2.5)

VV (z) =
3
2

[

−A′′ +
3
2

A′2−3
A′

z
+

1
2

1
z2

]

+m2
5,VR2e2A

z2 (2.6)

as well as

VB,± (z) = m5,BR
eA

z

[

±
(

A′− 1
z

)

+m5,BR
eA

z

]

. (2.7)

The AdS/CFT boundary condition for the bulk modes at smallz, which relates them to the twist
dimensions̄τM = L+2, τ̄B = L+3 of the dual hadron interpolating operators, is then imposed by
adjusting the bulk mode masses as [9]

m2
5,SR2 = τ̄M(τ̄M −4) = L2−4, (2.8)

m2
5,VR2 = τ̄M(τ̄M −4)+3 = L2−1, (2.9)

m5,BR = τ̄B −2 = L+1. (2.10)

The lightest string modes are associated with the leading twist operators, andtherefore with the
valence quark content of the low-spin (i.e. spin 0, 1/2, 1, and 3/2) hadron states [4, 10]. The duals
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of their orbital excitations (which have no counterparts in the supergravityspectra) are identified
with fluctuations about the AdS background [4, 10]. (This identification is incomplete, however, as
long as quark flavor is not explicitly accounted for.)

In order to search for IR deformationsA(z) which generate the linear trajectorial (LT) structure
(2.1), we first determine the required potentialsV(LT)

M,B . They should be rising quadratically withz
for z→ ∞ to yield an equidistant spectrum for the higher-lying excitations. The more challenging
question is how to obtain a universal slopeW in both meson and baryon channels. It turns out that
this can be achieved by replacinḡτi → τ̄i +λ 2z2 in the pure AdS5 potentials (i.e. Eqs. (2.5) - (2.7)
with A≡ 0) [9], leading to

V(LT)
M (z) =

[

(

λ 2z2 +L
)2− 1

4

]

1
z2 (2.11)

(which holds for both spin 0 and 1) and

V(LT)
B,± (z) =

{

(L+1)(L+1∓1)+ [2(L+1)±1]λ 2z2 +λ 4z4} 1
z2 . (2.12)

The normalizable solutions of the corresponding eigenvalue problems (2.2)and (2.3) can be found
analytically [9]. The eigenvalues

M2
M = 4λ 2

(

N+L+
1
2

)

, M2
B = 4λ 2

(

N+L+
3
2

)

(2.13)

indeed generate the observed trajectories (2.1) with universal slopeW = 4λ 2 and a mass gap of
order

√
W. They further imply the new relationsM2

M,0 = W/2, M2
B,0 = 3W/2 between the ground

state masses and the trajectory slope.
One has now to check whether the potentials (2.11), (2.12) can emerge from stringy fluctua-

tions in a bulk gravity background (1.1). We do this by construction, i.e. by equating the general-A
potentials (2.5) - (2.7) to their heuristic counterparts (2.11), (2.12), and by then searching for so-
lutions of the resulting differential equations forA(z) subject to the physical boundary conditions.
A priori the existence of such a bulk geometry is far from guaranteed since the potentials (2.11),
(2.12) may not result from a boundary gauge theory. This is reflected inthe fact that the nonlinear,
inhomogeneous differential equations forA may not have physically acceptable solutions.

As we have shown in Ref. [9], however, physically sensible IR deformations A(z) indeed
emerge as unique solutions. In the baryon sector, the solutionAB (z) subject to the conformal
boundary conditionAB (0) = 0 can be found analytically (for both chiralities),

AB (z) = ln

(

1+
λ 2z2

m5,BR

)

= ln

(

1+
λ 2z2

L+1

)

. (2.14)

The analogous solutions forAS in the spin-0 meson andAV in the vector meson channel, which
were numerically obtained and discussed in Ref. [9], are plotted forL = 0, ...,3 in Fig. 1. The
small-z behavior of these solutions hints at the formation of a two-dimensional condensate and
indicates its relevance for linear confinement. TheL dependence of the resultingA(z) may be
interpreted as describingL dependent stringy quantum fluctuations about the AdS background
which deform its metric in anL dependent fashion [9]. The nature of the singularities in several
mesonic IR deformations, their relation to the RG flow of the associated QCD interpolators, and
possible relations to the color-dielectric QCD vacuum structure are also discussed in Ref. [9].
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Figure 1: Typical solutionsAS(z) (left panel) andAV (z) (right panel) forL = 0 (full line), L = 1 (dotted
line), L = 2 (short-dashed) andL = 3 (long-dashed). The dual eigenmodes have significant support only for
z<

√
2λ−1.

M
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Figure 2: Left panel: Experimental meson mass spectrum from Ref. [11]and the predicted trajectory for
W = 2M2

ρ ≃ 1.21 GeV2; Right panel: same for the Delta isobar mass spectrum withS= 3/2 (in the 48
representation of SU(4)) and withW = 2M2

∆/3≃ 1.01 GeV2.

The resulting, overall description of the excited hadron spectra [12] is surprisingly accurate
[9]. Using the experimental rho meson massMρ = 0.76 GeV [11] to set the deformation scale
λ , the resulting slopeW = 1.21 GeV2 and spectrum reproduce the experimental meson masses
(for quark-antiquark states), as shown in the left panel of Fig. 2. (The pion ground state does
not fit into the overall pattern, due to the lack of explicit chiral symmetry.) Alternatively, we
can use the experimentalM∆ to determineλ = 0.50 GeV which differs by less than 10% from
the value in the meson sector and reflects the approximate slope universality (cf. right panel of
Fig. 2). The nucleon excitations require a somewhat smaller valueλ = 0.47 GeV and are less
well described by the trajectory (2.13) which overestimates, in particular, the ground-state mass
(yielding MN = 1.16 GeV). Finally, the estimatesΛQCD ≃

√

W/8≃ 0.35 GeV of the QCD scale
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andσ = W/(2π)≃ 0.88 GeV/fm for the string tension turn out to be close to the empirical values.

3. Holographic diquark correlations and the nucleon excitation spectrum

While the metric-soft-wall prediction (2.13) works remarkably well in the∆ sector [13] (all
observed∆∗ resonance states lie within errors on the predicted trajectory with empirical slope
corresponding toλ = 0.52 GeV), the description of the nucleon data is poorer [9]. In the following
section we review our recent extension [14] of the metric-soft-wall dualwhich generates a universal
additive correction

∆M2
B,κgd

= −2
(

M2
∆ −M2

N

)

κgd (3.1)

to Eq. (2.13) which solely depends on the resonances’ diquark content.The latter enters through
the good (i.e. most attractive) diquark fractionκgd in the space-spin-flavor baryon wavefunction
(i.e. κgd = 0 for all ∆ and spin-3/2N resonances,κgd = 1/4 for the spin-1/2 negative-parityN reso-
nances, andκgd = 1/2 for nucleons in the ground state). In order to compare Eqs. (2.13),(3.1) to
experimental data, one needs to assign intrinsic orbital and spin angular momenta L andS to the
observed states. This has been done on the basis of quark model arguments and extensively dis-
cussed in Ref. [14]. The correction (3.1) decidedly improves the agreement with all 48 measured
nucleon and∆ masses, beyond any dynamical quark model prediction of the full mass spectrum.

In searching for a transparent origin of the universal mass correction (3.1) in AdS/QCD, one
is led to ask how the diquark content of the baryon resonances can entera holographic description
although diquarks and their operators are gauge dependent while only gauge-invariant operators
have well-defined dual modes. The answer to this pivotal question lies in the(leading-twist) baryon
interpolating fields [15]

ηt (x) = 2
[

ηpd(x)+ tηsd(x)
]

(3.2)

of QCD which contain gauge-invariant diquark information through the pseudoscalar diquark oper-
ator inηpd = εabc

(

uT
aCdb

)

γ5uc and the “good” scalar diquark operator inηsd = εabc
(

uT
aCγ5db

)

uc.
(Here we specialize toNc = 3, as elsewhere in AdS/QCD.) The interpolators (3.2) are expected to
have enhanced overlap with nucleon states of equivalent diquark content and are thereby associated
with their good-diquark fraction. This manifests itself inκgd dependent anomalous dimensions
γ
t(κgd) of the corresponding interpolatorsη

t(κgd) which holographically induce mass corrections

∆m
(κgd)
5 = γ

t(κgd) for the dual modes [2] (as they could also arise e.g. fromκgd dependent cou-

plings of the dual modes to other bulk fields).

In order to include the contributions from the so far neglected anomalous dimensions, we
extend the metric soft wall by implementing three bulk spinor fieldsΨ(κgd) (cf. Eq. (2.4)) dual to
the interpolatorsη

t(κgd) with κgd = 0, 1/4 and 1/2, respectively. These fields are defined as the

solutions of the 5d Dirac equation with bulk masses

m
(κgd)
5 = m(ms)

5 +∆m
(κgd)
5 =

L+∆m
(κgd)
5 R+1

R
, κgd ∈ {0,1/4,1/2} (3.3)

6
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which ensure that the chirally-odd componentsψ− satisfy the AdS/CFT boundary conditions. To-
gether with the corresponding IR adjustment

AB(z) = ln

(

1+
λ 2z2

L+∆m5R+1

)

(3.4)

of the warp factor (2.14), the corrected bulk masses (3.3) were shown inRef. [14] to generate
a universal spectral correction of the form (3.1). In the absence ofreliable information on the
nonperturbativeγt we adjust

∆m
(κgd)
5 =

∆M2
κgd

4λ 2R
(3.5)

in bottom-up fashion to reproduce the values of (3.1). The eigenvalue spectrum (2.13) then turns
into the desired

M2
N,L = 4λ 2

(

N+L+
3
2

)

−2
(

M2
∆ −M2

N

)

κgd. (3.6)

(The spectrum (3.6) can also be obtained when the RG flow of the anomalousdimensions, which
translates into az dependent∆m5(z), is taken into account [14].) Moreover, the dual modes cor-
responding to largerκgd feel the soft wall at smallerz and therefore extend less into the fifth
dimension [14]. This reflects the additional attraction in the good-diquark channel and translates
into a smaller size of baryons with largerκgd.

4. Dynamical AdS/QCD

The AdS/QCD duals discussed above share with most of those so far considered the shortcom-
ing that they are not solutions of a dual gravity. Hence the dynamics which shapes the sought-after
QCD dual remains obscure. Some of the present dual candidates, including the dilaton soft-wall of
Ref. [8], furthermore fail to exhibit the area-law behavior of the Wilson loop which implies a lin-
early confining quark-antiquark potential [16]. Others (including the hard wall (1.2)) also confine
magnetic charges instead of screening them [17].

In Ref. [16] we have shown how the above limitations can be overcome, by deriving a confin-
ing AdS/QCD background from five-dimensional Einstein-dilaton gravity

S=
1

2κ2

∫

d5x
√

|g|
(

−R+
1
2

gMN∂MΦ∂NΦ−V(Φ)

)

(4.1)

with a metric restricted to the form (1.1) and a still general potentialV for the dilatonΦ(z). More
specifically, we search for static solutions of the corresponding field equations for the background
fieldsA andΦ, which we cast into the form

Φ′ =
√

3

√

−A′′ (z)+A′2(z)+
2
z
A′ (z)+

2
z2 (4.2)

and

V(Φ(z)) = −3e−2A

2z2

[

A′′ (z)+3A′2(z)+
6
z
A′ (z)+

2
z2

]

. (4.3)

7
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Our strategy is to construct solutions for the dilaton fieldΦ and potentialV(Φ) after prescribing an
area-law generating IR deformationA. More specifically, we adopt

A(z) = − 1+
√

3

2S+
√

3−1

(zΛQCD)2

1+e(1−zΛQCD)
(4.4)

which generates a discrete spectrum with a mass gap and the area law while keeping the fifth
dimension non-compact to allow for linear Regge trajectories. Eq. (4.4) remains close to AdS5
in the UV but deforms rather rapidly forz& Λ−1

QCD to approach the confining large-z asymptotics
A(z) → z2. (The spin dependent factor is required by universality. For a physical interpretation see
Ref. [9].) We then find the corresponding dilaton field and potential numerically such that their
combination solves the above Einstein-dilaton equations.

The ansatz (4.4) is furthermore designed to generate (approximately) linear Regge trajectories
in the highly excited meson spectrum. This spectrum is derived in the tensor gauge-field framework
of Ref. [8] which leads to a spin-dependent string-mode potential

VS(z) =
B′2(z)

4
− B′′(z)

2
(4.5)

with B = −(2S−1)(lnz+A) + Φ. Important qualitative aspects of the meson spectrum can be
understood by studying the UV (i.e.z→ 0) and IR (z→ ∞) limits of the mode potential [16]. In
Fig. (3) the resulting spectrum is compared to experimental data and hard- and dilaton-soft-wall
predictions. A satisfactory description of the meson spectrum with nearly linear trajectories of
universal slope is indeed achieved without tuning adjustable parameters,as testified by the rather
accurate parametrization

m2
n,S≃

1
10

(11n+9S+2) , (n≥ 1) (4.6)

(in units of GeV, forΛQCD = 0.3 GeV) which makes the approximate slope universality explicit.

0 1 2 3 4 5
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4
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2
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0 1 2 3 4 5 6
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3
4
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6

S

m
2
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eV
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Figure 3: (a) Radial excitations of the rho meson in the hard-wall (dashed line), dilaton-soft-wall [8] (dotted
line) and our dynamical soft-wall (solid line, forΛQCD = 0.3 GeV) backgrounds. (Note thatn = 1 refers to
the nodeless radial ground state.) (b) Square mass predictions of spin excitations vs. the PDG values [11].

Asymptotic freedom and the perturbative corrections to it could additionally be implemented
into Eq. (4.4) for smallz≪ Λ−1

QCD, according to the perturbative QCDβ function. This generates
a leading correctionApert(z) = (2lnz)−1 which naturally coexists with confinement at largez.
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5. Holographic glueball correlators

In order to make progress with the construction of improved AdS/QCD duals,one eventually
has to analyze more complex and detailed amplitudes. A natural choice are correlation functions
of hadronic interpolators which are both directly accessible from the AdS/CFT dictionary and in
several cases well-studied in QCD. With this motivation in mind, we have recentlyderived and
analyzed the predicitions of two popular AdS/QCD duals, the hard-wall (1.2) and dilaton soft-wall
[8] backgrounds, for the 0++ glueball correlation function and decay constants [6]. Since this work
was reviewed in Ref. [18], we will restrict ourselves here to a brief summary. (For related work in
the dilaton soft-wall at finite temperature see Ref. [19].)

Both holographic duals turn out to complement each other in their representation of specific
nonperturbative glueball physics (at momenta larger than the QCD scale):the soft-wall correlator

Π̂(sw)
(

Q2) = −2R3

κ2 λ 4
[

1+
Q2

4λ 2

(

1+
Q2

4λ 2

)

ψ
(

Q2

4λ 2

)]

Q2≫λ 2

−→ − 2
π2Q4

[

ln
Q2

µ2 +
4λ 2

Q2 ln
Q2

µ2 +
225
3

λ 4

Q4 −
24

3
λ 6

Q6 +
25

15
λ 8

Q8 + ...

]

(5.1)

(whereψ (z) = Γ′ (z)/Γ(z), λ is the dilaton mass scale andR3/κ2 = 2(N2
c −1)/π2) contains all

known types of QCD power corrections, generated both by vacuum condensates and by a hypothet-
ical UV gluon mass suggested to encode the short-distance behavior of thestatic quark-antiquark
potential [20], while sizeable exponential corrections as induced by small-scale QCD instantons
[21] are reproduced in the hard-wall correlator

Π̂(hw)
(

Q2) =
R3

8κ2Q4
[

2
K1(Qzm)

I1(Qzm)
− ln

Q2

µ2

]

Q2≫z−2
m−→ − 2

π2Q4 ln
Q2

µ2 +
4
π

[

1+
3
4

1
Qzm

+O

(

1

(Qzm)2

)]

Q4e−2Qzm (5.2)

(where the IR brane is located atzm). This complementarity generalizes to other hadron channels,
allows to relate holographic predictions to specific aspects of the gauge dynamics and suggests to
combine the underlying brane- and dilaton-induced IR physics into improvedQCD duals.

While the various contributions to the holographic estimates (5.1) and (5.2) have the expected
order of magnitude, the signs of the two leading power corrections in Eq. (5.1) are opposite to
QCD predictions and violate the factorization approximation to the four-gluon condensate. We
have argued that this provides specific evidence for the short-distancephysics in the Wilson coef-
ficients to be inadequately reproduced by the strongly-coupled UV dynamics of the gravity duals
(beyond the leading conformal logarithm) [6]. (This problem cannot be mended by admixing the
UV-subleading solution to the bulk-to-boundary propagator [22] withoutloosing consistency and
predictive power [18].) It remains to be seen whetherα ′ corrections, in particular the resummed,
local ones which are suggested to reproduce the RG flow of the gauge coupling [17], can generate
improved holographic predictions for the power corrections.

Since the QCD Wilson coefficients of the 0++ glueball correlator receive unusually small
perturbative and enhanced instanton contributions, the hard-wall correlator may yield the better
overall AdS/QCD description. Our holographic estimates of the glueball decay constants, which

9
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are important for experimental glueball searches, provide further evidence for this expectation. The
large hard-wall predictionf (hw)

S ≃ 0.8−0.9 GeV for the ground-state decay constant, in particular,
reflects the strong instanton-induced short-distance attraction in the scalarQCD glueball correlator,
implies an exceptionally small 0++ glueball size and is indeed close to IOPE sum-rule [21] and
lattice [23] results. The absence of instanton contributions in the soft wall with its confinement-
induced linear meson trajectories, on the other hand, may suggest that instantons are not directly
involved in flux-tube formation.

6. Summary and conclusions

We have reviewed our recent work on four topics in holographic QCD. To begin with, we have
sketched the construction of the “metric soft wall” dual and discussed its capacity to reproduce the
empirical combination of radially and orbitally excited hadron mass spectra into linear trajectories
of approximately universal slope. The resulting bulk background is solely based on IR deforma-
tions of the AdS metric, encodes dual signatures of linear quark confinement and contains only
one adjustable parameter related to the string tension. It so far remains the only AdS/QCD dual
which is able to reproduce linear trajectories also in the baryon sector. Thepredicted spectra, as
well as new relations between theρ and∆ ground state masses and the slopes of their respective
trajectories, are in good overall agreement with experimental data.

The metric-soft-wall predictions for the nucleon and its excitations turn out tobe significantly
less accurate than those in the meson and∆ sectors, however. This led us to extend this dual by
holographically encoding the diquark content of the light baryon states. The latter is specified by
the good-diquark fraction of the corresponding baryon interpolators whose anomalous dimensions
are then translated by the AdS/CFT dictionary into dual string-mode mass corrections. After im-
plementing the diquark correlations, the improved metric soft wall reproduces the masses of all
48 observed nucleon and∆ resonances with far better accuracy than e.g. quark models based on
substantially larger parameter sets. The behavior of the corresponding bulk modes further reveals
that the sizes of the light-quark baryons decrease when their good-diquark content increases.

Another focus of our work was the search for higher-dimensional gravitational dynamics
which are capable of generating approximate holographic QCD backgrounds. In particular, we
have derived a new solution of the five-dimensional Einstein-dilaton equations with a specific dila-
ton potential which generates a confining area law for the Wilson loop and can implement the
perturbative running of the gauge coupling. It further encodes linearsquare-mass trajectories for
both radial and spin excitations in the meson sector and reproduces the approximately universal
slope of the observed trajectories. The result is a satisfactory, fully dynamical description of the
light-flavored natural-parity meson spectrum without adjustable parametersbeyond the QCD scale.

In order to study the holographic dynamics in more detail, we have further derived and an-
alyzed the 0++ glueball correlation function and its spectral density in the hard-wall and dilaton
soft-wall gravity duals. The resulting expressions were confronted withQCD information from the
lattice, the instanton-improved operator product expansion (OPE), low-energy theorems etc. This
analysis revealed, in particular, that the soft-wall correlator contains allknown types of QCD power
corrections (including those generated by an effective UV gluon mass) while the hard-wall corre-
lator exhibits in a complementary fashion large exponential corrections as induced by small-scale
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instantons. The results further show that the comparison of holographic predictions with QCD
results at the correlator level provides valuable diagnostic insights into the limitations of the under-
lying duals and leads to useful suggestions for their improvement. The holographic estimates of
OPE Wilson coefficients, in particular, were shown to yield detailed and quantitative information on
the extent to which the underlying short-distance physics is contaminated by the strongly-coupled
UV regime of bottom-up duals. We have further derived predictions for theglueball decay con-
stants which contain crucial size information and are of direct importance for experimental glueball
searches. Remarkably, the strong instanton-induced attraction in the 0++ glueball channel is cap-
tured by the hard-wall dual, and its predictionf (hw)

S ≃ 0.8−0.9 GeV for the ground-state decay
constant agrees inside errors with instanton-improved sum rule and lattice results.

Several current limitations notwithstanding, we conclude that the amount of QCD dynamics
encoded in even the simplest holographic duals is encouraging and indicates that the bottom-up
approach may eventually turn into a systematic approximation for QCD.

It is a pleasure to thank Tobias Frederico, Eberhard Klempt, Wayne de Paula and Michael
Beyer for their collaboration on different parts of the work reviewed above, and the organizers and
participants of QCD-TNT 2009 for a very informative and enjoyable workshop. Financial support
from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Deutsche
Forschungsgemeinschaft (DFG) is also acknowledged.

References

[1] O. Aharony et al.,Large-N field theories, string theory and gravity, Phys. Rep.323(2000) 183.

[2] K. Peeters and M. Zamaklar,The string/gauge theory correspondence in QCD, Eur. Phys. J. Special
Topics152(2007) 113 [arXiv:0708.1502]; S.J. Brodsky and G.F. de Téramond,AdS/CFT and
Light-Front QCD, arXiv:0802.0514; J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall,Mesons
in gauge/gravity duals - a review, Eur. Phys. J. A35 (2008) 81 [arXiv:0711.4467]; S.S. Gubser
and A. Karch,From gauge-string duality to strong interactions: a Pedestrian’s Guide,
arXiv:0901.0935.

[3] J. Polchinski and M. J. Strassler,Hard scattering and gauge/string duality, Phys. Rev. Lett.88 (2002)
031601 [hep-th/0109174].

[4] G. F. de Téramond and S. J. Brodsky,Hadronic spectrum of a holographic dual of QCD, Phys. Rev.
Lett.94 (2005) 0201601; H. Boschi, N. Braga and H. Carrion,Glueball Regge trajectories from
gauge/string duality, Eur. Phys. J.C 32 (2004) 529;Phys. Rev. D73 (2006) 047901; J. Erlich, E. Katz,
D. T. Son and M. A. Stephanov,QCD and a holographic model of hadrons, Phys. Rev. Lett.95(2005)
261602; L. Da Rold and A. Pomarol,Chiral symmetry breaking from five dimensions, Nucl. Phys.B
721(2005) 79; S. J. Brodsky and G. F. de Téramond,Hadronic spectra and light-front wavefunctions
in holographic QCD, Phys. Rev. Lett.96(2006) 0201601;Phys. Rev. D77 (2008) 056007.

[5] C. Csaki, M. Reece and J. Terning,The AdS/QCD correspondence: still undelivered,
arXiv:0811.3001; E. Kiritsis,Dissecting the string-theory dual of QCD, arXiv:0901.1772.

[6] H. Forkel,Holographic glueball structure, Phys. Rev. D78 (2008) 025001 [arXiv:0711.1179];
AdS/QCD at the correlator level, PoS(Confinement8) (2008) 184 [arXiv:0812.3881].

[7] A.V. Anisovich, V.V. Anisovich and A.V. Sarantsev,Systematics of q̄q states in the
(

n,M2
)

and
(

J,M2
)

planes, Phys. Rev. D62 (2000) 051502(R) [hep-ph/0003113]; E. Klempt,A mass

11



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
1
4

Hadrons as Holograms Hilmar Forkel

formula for baryon resonances, Phys. Rev. C66 (2002) 058201 [hep-ex/0206012]; D.V. Bugg,
Four sorts of meson, Phys. Rep.397(2004) 257 [hep-ex/0412045].

[8] A. Karch, E. Katz, D.T. Son and M.A. Stephanov,Linear confinement and AdS/QCD, Phys. Rev. D74
(2006) 015005 [hep-ph/0602229].

[9] H. Forkel, M. Beyer and T. Frederico,Linear square-mass trajectories of radially and orbitally
excited hadrons in holographic QCD, JHEP07 (2007) 077 [arXiv:0705.1857]; Linear meson
and baryon trajectories in AdS/QCD, Intl. J. Mod. Phys. E16 (2007) 2794 [arXiv:0705.4115].

[10] S. J. Brodsky and G. F. de Téramond,Light-front hadron dynamics and AdS/CFT correspondence,
Phys. Lett.B 582(2004) 211 [hep-th/0310227].

[11] C. Amsler et al.,Review of particle physics, Phys. Lett.B 667(2008) 1.

[12] R.L. Jaffe, D. Pirjol and A. Scardicchio,Parity doubling among the baryons, Phys. Rep.435(2006)
157 [hep-ph/0602010]; L. Glozman,Restoration of chiral and U(1)A symmetries in excited
hadrons, Phys. Rep.444(2007) 1 [arXiv:hep-ph/0701081]; P. Bicudo,The large degeneracy of
excited hadrons and quark models, arXiv:hep-ph/0703114; S.S. Afonin,Parity doubling in particle
physics, arXiv:0704.1639.

[13] E. Klempt,Delta resonances, quark models, chiral symmetry and AdS/QCD, Eur. Phys. J. A38 (2008)
187 [arXiv:0806.4290].

[14] H. Forkel and E. Klempt,Diquark correlations in baryon spectroscopy and holographic QCD, Phys.
Lett.B 679(2009) 77 [arXiv:0810.2959].

[15] D. Espriu, P. Pascual and R. Tarrach,Baryon masses and chiral symmetry breaking, Nucl. Phys.B
214, 285 (1983).

[16] W. de Paula, T. Frederico, H. Forkel and M. Beyer,Dynamical AdS/QCD with area-law confinement
and linear Regge trajectories, Phys. Rev. D79 (2009) 075019 [arXiv:0806.3830]; Solution of
the 5D Einstein equations in a dilaton background model, PoS(LC2008) (2008) 046
[arXiv:0810.2710].

[17] U. Gürsoy and E. Kiritsis,Exploring improved holographic theories for QCD: part I, JHEP02 (2008)
032 [arXiv:0707.1324]; U. Gürsoy, E. Kiritsis and F. Nitti,Exploring improved holographic
theories for QCD: part II, JHEP02 (2008) 019 [arXiv:0707.1349].

[18] H. Forkel,Glueball correlators as holograms, to be published in the Proceedings ofContinuous
advances in QCD, Minneapolis (2008),arXiv:0808.0304.

[19] A.S. Miranda, C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga,Black-hole quasinormal
modes and scalar glueballs in a finite-temperature AdS/QCD model, arXiv:0909.1790.

[20] K.G. Chetyrkin, S. Narison and V.I. Zakharov,Short-distance tachyonic gluon mass and1/Q2

corrections, Nucl. Phys.B 550(1999) 353 [hep-ph/9811275].

[21] H. Forkel,Scalar gluonium and instantons, Phys. Rev. D64 (2001) 034015 [hep-ph/0005004];
Direct instantons, topological charge screening and QCD glueball sum rules, Phys. Rev. D71 (2005)
054008 [hep-ph/0312049]; QCD glueball sum rules and vacuum topology, Proceedings of
Continuous advances in QCD, Minneapolis (2006), 383 [hep-ph/0608071].

[22] P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri,Investigating AdS/QCD duality through scalar
glueball correlators, arXiv:0711.4747.

[23] Y. Chen et al.,Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D73 (2006)
014516 [hep-lat/0510074].

12


