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1. Introduction

The investigation of infrared properties of Landau-gauge gluon andtgiropagators — in
order to test predictions of the Gribov-Zwanziger confinement scenariof the Kugo-Ojima
scenario — has generated a flurry of papers in the last couple of. y@dnie the formulation
of these two scenarios, their equivalence (or lack thereof) and theeohmrocedure for solving
these propagators’ Dyson-Schwinger equations have become mattexatefl debate, a consis-
tent picture emerges from lattice studies. Based on this picture, which istialghsagreement
with the predictions of both scenarios, present activity focuses on tnigessions of the origi-
nal scenarios, on discussion of their main assumptions and/or implicatiahenamhether or not
there are physical criteria to prefer a solution of the Dyson-Schwingeatens (or other func-
tional methods) of the “scaling” or of the “massive” type. In this way, oapds to have gained a
deeper insight into confinement in Landau gauge. We will not review teseus analytic studies
here, but rather refer to recent status reports and overviews cediaithese proceedings, such as
Ref. [1], which summarizes the so-called refined Gribov-Zwanzigendmork, Refs. [2] and [3],
which address the problem of the characterization of the Kugo-Ojima scera its relation to
the Gribov-Zwanziger one, or Ref. [4], which reviews the solution o§&ySchwinger equations
in Landau gauge and discusses phenomenological applications. Wavwkydr, attempt to review
thoroughly the recent literature on lattice studies of the topic.

In what follows we consider tests of the original Gribov-Zwanziger catfient scenario, i.e. a
vanishing gluon propagator and an enhanced ghost propagator ifrdredlimit. On the contrary,
in the refined Gribov-Zwanziger framework mentioned above, one é&xpdmite (nonzero) gluon
propagator and a free ghost propagator in the same limit. These two casgmaistent respec-
tively with the so-called scaling and massive (or decoupling) solutions obgts®n-Schwinger
equations. The latter behavior has been strongly favored in all reg@nsive lattice studies,
performed on very large lattices for pure SU(2) and SU(3) gaugeythéarargued in [5], the es-
sential features of the original Gribov-Zwanziger confinement sceaae not incompatible with
these findings, since violation of reflection positivity is clearly observedhe gluon propagator
and enhancement with respect to the free propagator is seen for thteatjirdermediate momenta.
Also, a logarithmic enhancement of the ghost propagator might be possthke gontinuum limit.
A scaling solution (with nontrivial infrared exponents), however, isduat.

From the point of view of lattice simulations, we must strive to keep under @idhte various
sources of systematic errors that might obscure the true infraredibeb&the propagators, in or-
der to conclude that the behavior described above is firmly establishedu@fe, once the massive
behavior is confirmed from the simulations, one must understand why thévioelarises in the
infrared limit of the theory, and how we might reconcile it with a confinementhrarism. Again,
insight into the problem can hopefully come from the numerical simulations thessseAlso,
it should be noted that the comparisons mentioned above assume that teedgéiogion on the
lattice is physically equivalent to the continuum one, an issue that shoulatréfilty investigated.
We will refer here to the so-called minimal Landau gauge condition [6].

In Section 2 we review some aspects of the numerical simulations, with spiergla@n to the
main possible sources of systematic errors. We also attempt an overviefgrefirces and chronol-
ogy of the main recent lattice results on the topic. In Section 3 we summarizestirigreonstraints
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on the infrared behavior of the propagators, written in the form of uppdiower bounds at fixed
lattice volume. Although these bounds were introduced as a guide to the inbhitee extrap-

olation, we believe they will be useful tools to investigate why the propaghtors the observed
behavior, since they naturally relate to a statistical interpretation of the gliapagator and to
a clearer view of the ghost propagator in terms of the spectrum of theeBad®bpov operator.
Section 4 is dedicated to the results from very large lattices mentioned aba&vsuiarize the
analysis of data from our simulations of the pure-SU(2) case, whichssengally equivalent to
the corresponding results by other lattice groups. In Section 5 we adithe8 = 0 case, where
various sources of systematic errors may be investigated more easily. b$ae/ed behavior is
compared with the one at finife. Finally, we present our conclusions in Section 6.

2. Thesimulations

On the lattice, the gauge action is written in terms of oriented plaquettes, formtbe tipk
variabledU,,(x), which are elements of the gauge grdsig(N;) and change under gauge transfor-
mations as

Uu() — UE(X) = g09Upu(x)g(x+ )", (2.1)
whereg € SU(N.), lattice sites are labeled byand u refers to the directions along the lattice.
Consequently, all closed loops are gauge-invariant quantities, incltiténglaquettes in the pure-
gauge-theory action

S{u}) = flc S SOTr[1- U (00U (x+ UL (x+ D)UT (x)] . (2.2)

v X

Here B is the lattice parameter, related to the bare coupling cong@as B = 2Nc/g§. Except
where otherwise indicated, we consider (symmetric) hypercubic latticempgpace-time dimen-
sions. The lattice size in physical units is givenlby- Na, whereN is the number of points per
lattice direction and the lattice spaciags expressed in physical units. The physical volume is
thusV = L% (Note that one often refers to the “lattice volumié* =V /a*.) We assume periodic
boundary conditions.

Let us remark that the resulting path integral has a finite (group) integnatiome and there
is in principle no need for gauge fixing on the lattice. A procedure for fitlireggauge numerically
may nevertheless be implemented in a straightforward way in the simulation, witreoneed to
consider the Faddeev-Popov matri%. For minimal Landau gauge, one minimizes the functional

4

08D = 1

ZZDTrUf}(X) (2.3)
[T

with respect to the gauge transformatidigg. Indeed, the first derivative of this functional yields
the familiar Landau gauge condition of null (lattice) divergence of the gédietd, which is defined
in terms of the link variables as

1

Au(x) = 2iagy

[U“ (X) B UlI (X>] traceless’ (2.4)
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The prescription for fixing the gauge in a simulation is thus to: 1) produceigegbink configura-
tion {U } as usual, 2) to findg} that is a (local) minimum of the functional (holding {U } fixed)
and 3) to transforr{U } following Eq. (2.1) for the selectefg}. The resulting configuration is a
gauge-fixed realization of the link variables, which will be used to computerehbles of interest
such as the gluon and ghost propagators.

The gluon propagator is given in Landau gauge simply by

DRR(P) = 3 & A AL0) = & (g~ P2 ) D), 25)

wherep is the momentum and, b are color indices. It is therefore determined solely by the scalar
functionD(g?) associated to its transverse component. In the original Gribov-Zwarstgeario,
gluon confinement is associated with violation of reflection positivity for themlpropagator (in
real space-time).

As pointed out above, lattice gauge fixing is accomplished without the neashtpute the
Faddeev-Popov matrix#. Nevertheless, the matrix can be obtained directly from the second
variation of the gauge-fixing functional, which corresponds to the Jacobian of the gauge-fixing
condition. It is interesting to note that in this way there is also no need to corb&lghost fields
explicitly [7]. The ghost propagatds(p?) is given by the inverse o as

1 @27 p-(x=y)
NZ—1 Z \%

C X y,a

G(p%) = (M axay)). (2.6)

An infrared enhancement @(p?) with respect to the tree-level ghost propagaegp?) ~ p—?2
is expected in the original Gribov-Zwanziger scenario (and in the Kugm&lone) as a sign of
confinement.

Let us note that the known problem of Gribov copies is present on the latieeell, since
each local minimum of the function& corresponds to an equivalent (lattice) gauge copy. The
algorithm for fixing{g} has in principle no control over which copy gets selected. Because of the
minimization, we know that# is positive semi-definite and, as a result, the sampled copies are
inside the first Gribov horizof, which is delimited by the vanishing @f,in, the smallest nontrivial
eigenvalue of#. It is usually argued that a unique copy might be obtained, correspptalitne
fundamental modular region, if one were able to determine the global minimun#®ofThis region
has been studied on the lattice in [8]. In any cd&3@ndA are shown to be convex regions of very
high dimensionality, which likely constrains the statistical weight of gauge gorgtions to lie
near their boundary. In particular, one should check if the sampledgewations have vanishing
Amin @s the lattice volume goes to infinity.

Lattice simulations have been carried out since the mid 1980s for the glupagator [9]
and since the mid 1990s for the ghost [10] (see also [11]). Early sthdies established that the
gluon propagator is not enhanced at small momenta [12], but did not alldhefr conclusions
about its infrared behavior. A turnover point in momentum (suggestinglarpagator) could
only be seen at strong coupling [13] or in three space-time dimensions Helever, even in
this simplified case, a later study on a very large lattice (of volumé)18s still not conclusive
[15], although it was possible to 2(0) to zero in an infinite-volume extrapolation, and violation
of reflection positivity was clearly seen [16]. For the ghost propagatfsared enhancement was
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observed, but the corresponding infrared exponent seemed tmbestoaller as lower momenta
became available [10, 11, 17, 18]. It was also clearly shownthatgoes to zero with increasing
lattice volume [19, 18]. These studies were complemented by investigations stftimg coupling
constant (see e.g. [20, 21]) and several three-point verticee (§eR2, 23, 24, 18]). This was the
status until 2006. As became clear later, systematic effects had not yephbmeerly taken into
account, which limited the conclusions (or the lack thereof) of these studiesiow pause for a
moment and list the main such possible effects (and related referentms) be

e Gribov-copy effects:. this is a very important issue. As commented above, usual simulations
do not take fluctuations in the values of the propagators due to Gribov-efbgcts into
account. A few studies have considered the determination of the absolute mirgfrthe
gauge-fixing functional (see e.g. [11, 25]) or other criteria to fix thegga[26]. It was
generally found that the effect of Gribov copies decreases as the latlicme increases.
This statement must be taken with a grain of salt, since the number of copieyadris
limited and one does not know for sure if this number is large enough atea givlume
to allow the determination of the global minimum. Studies of the exact structureilmd\sr
copies are now being carried out (on small lattices) [27]. Let us mentidit thas argued by
Zwanziger [28] that averages taken in the fundamental modular regimuridsboincide with
averages if2 in the infinite-volume limit. We thus conclude that a sign of significant Gribov-
copy effects has not yet been seen and the effects observedase fanobably connected to
the next item below. (We do note, however, that a very recent studsepasted on sizeable
effects at large lattice volumes [29].)

e Finite-volume effects. perhaps surprisingly, these are the most serious systematic effects we
have to deal with. To be sure, lattice simulations must be carried out at finite latiemes,
since computers have finite memory. As mentioned above, the physical ekteatatticel
is given by the number of lattice points along each direction multiplied by the lattazrap
a in physical units, which is directly related to the lattice paramgteifo simulate closer
to the continuum limit one must go to smallgror equivalently to largef, while keeping
the simulated lattice large enough to represent the relevant energy stéhespsoblem.
Strictly speaking, one would need an extrapolation to infinite lattice volume &t feesxl
value of 3. (A continuum extrapolation would additionally require running at incraggin
smaller values of.) In usual lattice applications, though, taking the infinite-volume limit is
not among the most serious issues, since one typically just needs to hifieiard number
of points to ensure a physical lattice size of the order of the relevanthigdscale, i.e.
around 1 fm. The main effort is then to go to very snalin order to avoid discretization
errors (addressed below). In studies of the infrared limit, howevesithation is different,
and finite-size effects play an important role. This happens becausdrta@dhlimit lies at
small p, corresponding to large. (Note that the smallest nonzero momentum that can be
represented on a lattice of siés ~ 27/L.)

e Discretization effects. as indicated above, the effects due to simulating at nonzero lattice
spacinga are not expected to be so serious in the infrared limit, because the emalgy s
associated with the cuto#f (which is ~ 1/a), is sufficiently high compared to the typical
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momenta of interest. In other words, the long wavelengths we are interestiedniot re-
solve the lattice spacing and are not much affected by it. Neverthelesstdigtion errors
may be important for the breaking of rotational symmetry as well as for trelgeslifferent
discretizations of the gluon field and of the gauge-fixing condition. Thergvays to reduce
effects due to the breaking of rotational symmetry, such as cutting out the mctearac-
terized by large effects [12] (the so-called cylindrical cut), improvingéltiice definition of
the momenta [30] and including (hypercubic) corrections into the momentuendepce of
the Green’s functions [31]. As for the discretization of the gluon field @rttie lattice Lan-
dau gauge condition, several different definitions may be consideesdg.g. [32]). These
studies have usually found that different discretization procedurdgdegluon propagators
that differ only by a multiplicative constant, which can be reabsorbed inntludtiplicative)
renormalization of the propagator.

e Unquenching: in the Gribov-Zwanziger and related scenarios, one hopes to getdam-un
standing of confinement in the static-quark limit, where there is no string ingeakd the
confinement problem may be phrased as a search for explaining wheathas develops
[33]. Thus, it should be sufficient to consider the pure-gauge theeayed here, also known
as the quenched approximation. Nevertheless, an important question teépiwture gets
affected once dynamical quarks are introduced in the simulations. Stumtiessod far (on
relatively small lattices) show qualitatively the same behavior as in the puigegase [34].

In 2007, studies of Dyson-Schwinger equations on the torus [35] hih&dinite-size effects
might indeed be plaguing results from lattice simulations and predicted thatahlgtice sides
of the order of 15 fm might be needed to begin to see the expected (omifecaling) infrared
behavior of the propagators. At about the same time, two other predictfosisntar studies
were verified in simulations: the (quantitative) equivalence of infraregagators in the SU(2)
and SU(3) caséq37, 38] and the verification of conformal scaling behavior in two spane-
dimensions [39]. That same year, three groups came out with studiesylarge lattices, which
were all presented at thattice 2007conference. The Berlin-Dubna group consideretil&tices,
corresponding to a lattice extent of 13 fm, in the SU(3) case [40]. (Thedysof the gluon
propagator was later extended td*3éitices, corresponding to a lattice extent of 16 fm [41].) The
Adelaide group considered 14ifttices, corresponding to 19 fm, in the SU(2) case [38]. Similarly,
we considered 1Z8lattices (corresponding to 27 fm) in the SU(2) case, plus three-dimensional
lattices of size 32%) corresponding to 85 fm [42]. What these studies showed was puzZling
the one hand, the large volumes clearly allowed a better view of the infraataey on the other,
this view was nothing like what the authors had imagined it would be! In faghggtw large
volumes in the hopes of seeing a null infrared gluon propagator not stapleshed thaD(0) was
notnull (even in three dimensions), but also exposed the fact that the psfyvgeen enhancement
of the ghost propagator goes away at very small momenta, and the datnaistent with a flat
ghost dressing function in the infrared limit.

IAlthough one cannot expect this to hold at high valuep,it is conjectured that the casbl = 2 andNg = 3
have the same infrared behavior. A recent comparison along a veidge of momenta presented in [36] shows some
discrepancies between the two cases.
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This behavior is analyzed in Section 4. In the next section, on the othdr Wwarcomment on
rigorous bounds for the propagators, introduced as a guide to the infolitsne extrapolation.

3. Boundson propagators and statistical interpretation

As discussed in the previous section, one of the main difficulties in the lattice siomslas
the extrapolation of gluon- and ghost-propagator data to infinite lattice volumfact, the correct
volume dependence of the data may not be easily inferred from the bebavwoedium-size (or
even very large) lattices, especially since some quantities, such as thmaerentum gluon prop-
agator, are quite noisy. It is then very helpful to obtain constraints on theréad behavior of the
propagators, as the upper and lower bounds discussed in this secéaamAfrk that these bounds
are valid at each lattice volume and must be extrapolated to infinite volume, jiesttae propa-
gators. The advantage is that the bounds are written in terms of quantitiesdhabre intuitive
than the propagators themselves, making it easier to guess the expectad dejpendence of the
propagators and possibly allowing an explanation of the infrared bahalyserved in the data.

In the case of the gluon propagator, we obtain [43] the bounds

V(M(0))* < D(0) < VA(NZ—1)(M(0)?), 3.1)
whered is the dimensiony is the volume,
_ vV 2D /)12
PO) = grg=1) 2, MO (32)
is the zero-momentum propagator avid0) is defined as
1 b
MO0) = ———= Y |A(0)] . (3.3)
0 = gre=g 2, O
Let us also define the “magnetization”
M’ (0

A (0). (3.4)

) = 1
d(Ng_ 1) b,

From the above definitions we can gegtatistical interpretatiorfor the quantity on the right-hand
side of (3.1): it is essentially the susceptibility associated with the magneti2dti@ (since the
average of this magnetization vanishes, due to the residual global gaugeetry). By analogy
with ad-dimensional spin system one would thus expect tos@é(0)?) ~ const i.e. the statistical
variance of the magnetization is proportional to the inverse of the volumézioe known aself-
averaging At the same time, considering the statistical fluctuations in the Monte Carlo sampling
of M(0), we would expectM(0))? to have the same volume dependencéMg0)?) [43]. The
simple statistical argument presented above suggests thatNédh)? and (M(0)?) should show

a volume dependence ag\l On the other hand, this suppression witfVlis compensated by
the volume factor for both bounds in Eq. (3.1). Consequently, if this sstgdebehavior for the
susceptibilities is verifiedD(0) converges to a nonzero constant in the infinite-volume limit. As
explained in the next section, this is what one observes in the simulations.tiédtine bounds
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in Eq. (3.1) apply to any gauge and that they can be immediately extended tasti(@?) with
p # 0. We also note that a very interesting stochastic interpretation for the ghopagmator has
been investigated in [44].
Also in the case of the ghost propagator, a more intuitive picture comesnfodicing that in
Landau gauge, for any nonzero momentpnone finds [45]
i 3 (@) < G < 5

_— )
FY )\min

(3.5)

whereAnin is the smallest nonzero eigenvalue of the Faddeev-Popov ope#atond Yinin(a, p) is
the corresponding eigenvector. Note that the upper bound is indegesfdbe momentunp. If
we now assum@min ~ L= and G(p?) ~ p~2~2 at smallp, we have that 2-2k < v, i.e.v > 2,

is a necessary condition for the infrared enhanceme@i(pf). A similar analysis can be carried
out for a generic gauge condition. Consider the Gribov reQomwhere all eigenvalues o# are
positive. In the infinite-volume limit, as mentioned above, entropy favors gorgdtions near the
Gribov horizondQ, whereAmin goes to zero. Thus, inequalities such as (3.5) can tell us if one
should expect an enhanc& p?) when the Boltzmann weight gets concentrateddéh. (This
answers the question posed in [46].) In other words, it is clearly nagess but not sufficient —
to have a vanishingdnmin as the volume tends to infinity in order to observe enhanceme(h([m?f).
The upper bound in Eqg. (3.5) was tested for our data in [45], albeit with linsitetistics forAmin.
We findv = 2, consistent with finding — 0 from fits of G(p?), as shown in the next section.

Let us also mention that a possible connection between the infrared bebéviw gluon
propagator and the appearance of nontrivial zero modeg &br configurations nea?Q has been
recently presented in [47]. The two types of scenarios obtained themrabably be related to the
massive and the scaling solution for the propagators.

4. Huge lattices

Our study in theSU(2) Landau case [45], using the very large lattices mentioned above, is
summarized here. In Fig. 1 we show data for the gluon propagatb=id andd = 3 for a wide
range of (large) lattice volumes, indicating tix{0) remains nonzero in the infinite-volume limit.
Similar results are obtained in [38, 40, 41], as mentioned before, but alg8inwhich takes
Gribov-copy effects into account and in [49], which uses improved astmd anisotropic lattices.
We have investigated the volume dependence of the bounds in Eq. (3.1pwamtremarkably
good agreement with the predictegMLbehavior for(M(0))? and (M(0)?), thus implying a finite
nonzero value foD(0) in the infinite-volume limit. More precisely, by fitting the two quantities
to 1/V? we get the exponents respectively 0.995(10) and 0.998(10). A similar analysis for the
SU(3) case (considering somewhat smaller volumes) yields the expon@s&@) and 1.056(6)
[50]. Violation of reflection positivity forD(x) is seen in all cases.

Our data for the ghost propagator support a tree-level (or freg) iothe infrared limit. This
behavior is better seen if one considers the dressing funpfiGnp?), as shown in Fig. 2. Indeed,
the data can be well fitted [45] by the foran- b [log(1+cp?) +dp?] /(1+ p?), consistent with
k = 0in the infrared limit. Note also that, for smallpythis form is equivalent ta— blog(1+ cp?)
(proposed in [51]), where may be related to a gluon mass. This is also observed-#3. We
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Figure 1: The gluon propagatdd(p?) as a function of the lattice momenga(both in physical units) for
the pureSU(2) case ind = 4 (left), considering volumes of up to 128attice extent~ 27 fm), andd = 3
(right), considering volumes of up to 32(lattice extent- 85 fm).

remark again that enhancement is seen at intermediate momenta and thadjrdgparhow the
fit parameters change with the lattice spacing, there might be a logarithmicommhant in the
continuum limit.

5 B=0

An interesting laboratory to test for various sources of systematic errdig isimulations is
the apparently trivial case ¢f = 0, i.e. no dynamics from the lattice Boltzmann weight associated
with the action [see Eq. (2.1)]. This was considered in [13, 52, 53].eSne 0 corresponds to
an unphysical limit, the issue of setting the lattice scale (givena)dg delicate. As discussed in
detail in [53], a possible choice &— . This is convenient because the lattice extent will already
be infinite and there will be no finite-size effects. On the other haralisifarge andp is not very
small there could be discretization effects. We must see from the data wfdchigs predominant.
(The latter effect may also be measured in terms of breaking of rotatioraianee.) As shown
in [53], we see: 1) clear violation of reflection positivity for the gluon mgator, 2) a seemingly
finite and nonzero limit foD(0), including analysis with the bounds in Eq. (3.1), 3) a very good fit
of p?G(p?) to the forma— blog(1+ cp?) and 4) no finite-volume or rotational-symmetry-breaking
effects, suggesting that the data are in the deep infrared limit and at infolitme. Essentially,
we see the same infrared behavior as for fiflitéNote that our conclusions differ somewhat from
[52].

6. Conclusion

Lattice simulations of infrared Landau gluon and ghost propagators ¢awe a long way
in the past couple of years. The current paradigm is that of a madsive gnd a free ghost, as
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Figure 2: The ghost dressing functigp?G(p?) as a function of the lattice momentg (both in physical
units) for the pureSU(2) case ind = 4 (left), considering volumes of up to 12@attice extent~ 27 fm),
andd = 3 (right), considering volumes of up to 32(attice extent- 85 fm). Note the logarithmic scale for
p?. We also show the fits ta— b [log(1+cp?) + dp?] /(1+ p?). Ford = 4, the fit parametera, b, c,d are
respectively 4.32(2), 0.38(1), 80(10), 8.2(3).

proposed long ago by some Dyson-Schwinger-equation studies (s¢848)g These simulations
are greatly influenced by interchange with researchers who use aralgltgemi-analytic methods,
and vice-versa. This synergy has contributed to making infrared QGygovoductive field, with
an active community and several dedicated workshops every year.
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