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1. Introduction

Many years ago Mandelstam obtained a solution of the SDE for the glugagator, in the
Landau gauge and in the case of pure gauge QCD, that behavet‘da the infrared [1]. This
solution was named as a “confined gluon solution" because it naturally tead@ear confining
potential. This result motivated intense phenomenological studies wheie grhhnced propaga-
tor was substituted by more tractable functions, however these functioastilepeaked at origin
of momenta. Examples of this program can be found in the review of Ref.[2].

Although not widely diffused, it is mentioned in Mandelstam’s paper abouptssible ex-
istence of a massive solution for the gluon propagator, but this solutiordisearded since the
beginning in his approach. Within the same approximation [3] but with one inggrtwee gluon
vertex function [4] it can be shown that this solution indeed exists in thediagduge. Of course,
such soft IR behavior certainly requires a more subtle confinementreatjoa [5].

The problem with a large part of the more recent SDE calculations for thom gitopagator
(for a review, see [6]) and the ones discussed above is that theytdeabto transverse solu-
tions as required by gauge invariance, and it seems that the only way eatlenschwinger’s
mechanism dauge invariank realization in non-Abelian gauge theories is rearranging the SDE
diagrams through the pinch technique [5, 7]. This was, for the first timdsei@ by Cornwall
in 1982 [5], who obtained a gauge invariant solution for the gluon pratgaghat behaves as
1/[k? +m?(k?)]. Ask? — 0 the functionn?(k?) was interpreted as a dynamical gluon mass with
the limit m?(k? — 0) = m¢. In this picture the coupling constant is also IR finite with a fixed point
behavior described by

1

0sal0) = 4rbin[(4ng) /A7)’

(1.1)

where/A = Agcp is the QCD scale where the perturbative coupling becomes singular. Raitiee
QCD simulations present clear evidence for the dynamical generationloba gass (a long list
of references about these simulations can be found in Ref.[8] anctatrgicnulation can be seen
in Ref.[9]), with the SDE result for a massive gluon fitting nicely the lattice dbBg. [

There are several reasons to review the strong interaction phenomieablajculations on
the light of IR finite gluon propagator and coupling constant. A simple one tdritthis scheme
we get rid of the Landau singularity in the coupling constant, which introcirgularities in
the physical amplitudes that do not correspond to the expected physlwalibr. There are also
singularities in QCD amplitudes, like the one in the two-gluon QCD Pomeron modigl tHat
disappear when dealing with a dynamically generated gluon mass. The dghahiocn mass
also introduces a natural IR cutoff which may substitute the one that is slp@gent in many
perturbative QCD calculations. Moreover it is usually argued that thebative QCD series can
be reorganized in order to ameliorate its behavior, but, most important ofialpgkimization of
the perturbative expansion is quite dependent on the infrared belaivilbe coupling constant
[12], and the dynamical mass generation scheme is precisely giving usrdre which direction
to go in order to improve the perturbative series. Finally, besides all tbasems, the fact that IR
finite Green’s functions with a dynamically generated gluon mass scale pravidtter agreement
between experiment and theory, as will be shown here, corroborat&Di and lattice results.
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As we shall discuss in the next section, when presenting the expre&sidhe gluon propa-
gator and coupling constant, the SDE solutions cannot determimgyth@lue, and the best we can
do is to determine the ratimg//A. We will show that several perturbative calculations can be im-
proved with the knowledge of propagator and coupling in the full rangaahenta, and in some
cases the experimental data can only be fitted with the help of these IR finitttipsa In Section
2 we discuss that the relevant scheme to introduce these non-perteirb&divnation into the QCD
perturbative expansion is the one named Dynamical Perturbation THeBil)(then we present
examples of phenomenological calculations that make use of IR finite Griegctions. Different
observables are computed as a functiomgtind all data indicate a small range for the dynamical
gluon mass, what is impressive if we consider that our examples invoheratitf hadronic mass
scales or wave functions. In Section 3 we comment how this procedutee@iended to compute
higher order terms of the perturbative expansion and we make a summagtiars4.

2. DPT at tree level

2.1 DPT and IR finite SDE solutions

A prescription of how the non-perturbative SDE solutions can be insgertethe perturbative
QCD expansion was proposed by Pagels and Stokar many years agoapptioach denominated
DPT [13]. In their scheme the amplitudes that do not vanish to all ordersriarpation theory
are given by their free field values, while amplitudes that vanish ase /9" are retained, and
possibly dealt with in an expansion gfiA. The work of Ref.[13] was particularly concerned with
the effect of a dynamically generated quark mass, but as we now koowtfre SDE solutions that
the gluon and coupling constant also have an infrared finite value, wextand their formulation
and generalize the perturbative expansion using the quark and glopagators with a dynamical
mass and the IR finite coupling constant. This means that we should perfotumbadion theory
with the dressed quark and gluon propagators and the effectiveecfdegendent on the gluon
mass).

The SDE solutions and the lattice results were discussed at length in thishepi$], there-
fore we will not enter into details about the solutions and will just presendltien propagator and
coupling constant in the case that QCD generates a dynamical gluon riiessyise we mention
in the references where a different SDE solution is used. We consglaoa propagator that will
have the form
qz?v s Puv = —0pv + ngv ; (2.1)
whereA(q) is the gauge invariant scalar part of the gluon propagator, which in Eaelidpace has
the form

By (0) = PuvA(Q) +¢&

1
Q>+ mg(Q?)

The gluonic SDE solutions allow us to write a new propagdtot(Q?) which absorbs all the
renormalization group logs, exactly as happens in QED with the photonrsasifye and form the
productd(Q?) = g?A(Q?) which is a renormalization group invariant. The dynamical gluon mass
(mS(QZ)) is given by a complicated expression falling with the momentuny&¥ 114], and it can

AQ) O (2.2)
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be simply approximated by [4]

2 _ MG
= , 2.3
wheremg ~ 0(1.2—2)/\, with A = Agcp ~ 300 MeV. As this is still a complicated expression to
take into account when calculating loops, in practical calculations, thengesan do is to assume
mS(QZ) ~ mé A simple fit for the coupling constant that is factored out in this procedugé/en

by [5]
1

asd(qz) - 4nb|n{(4rr6 — q2 — I£)//\2] ’

whereb = (33— 2n¢) /481, Eq.(2.4) clearly shows the existence of the IR fixed-point shown in
Eq.(1.1). It must be stressed that the fixed point shown in Eq.(1.1) ddetepend on a specific
process, it is uniquely obtained as we fxand, in principle, it should be exactly determined if we
knew how to solve QCD. The quantiti(Qz) is the one that appear in all loop calculations. As
in QED, where the only ultraviolet divergences are associated with theumagpolarization, and
affect the renormalization of the coupling constant, in QCD, as the pinchitpehis applied and
the vacuum polarization is summed, the only difference is that instead obamahzed coupling
and a massless propagator it is a factor ﬁi{@z) that appears in the calculation, indicating the
existence of a massive propagator and an IR finite charge.

There are several examples of the use of DPT with the propagator amdingp constant
discussed above [16] apart the ones that will be commented in the neecsiains [17, 18, 19, 20],
where the nice description of the experimental data within this procedureecperceived.

(2.4)

2.2 Pion form factor

The asymptotic pion form factor is predicted in perturbative QCD, accgrirBrodsky and
Lepage [21], as

1 1 o ~
FolQ?) = [ dx [ dyg (v QT ey o B (2.5)

whereQy, = min(x,1—x)Q andQ is the 4-momentum in Euclidean space transferred by the photon.
The functiong(x, QX) is the pion wave function, that gives the amplitude for finding the quark or
antiquark within the pion carrying the fractional momenturor 1— X, respectively. The func-
tion Ty (x,y,Q?), is the hard-scattering amplitude that is obtained by computing the quarkrphoto
scattering diagrams shown in Fig.(1). The perturbative kefinés giving by

_64m [2a5[(1-X)(1-y)Q¥] | 1as(xyQD)

T = S5 5 oy ey
while in the case of DPT the gluon propagator and coupling constant einamged by the dressed
(non-perturbative) functions:

(2.6)

o 5Tk + PN @)

TH (Xa Y, QZ) = T

whereK? = (1—x)(1—Yy)Q? andP? = xyQ. The details of the calculation, as the dependence
on the pion wave functions and other quantities, can be found in RefJhé&.comparison of the
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Figure 1: The leading-order diagrams that contribute to the pion ftactor.

theoretical result with the experimental data can be seen in Fig.(2). Thetanpppint to notice
is that this result comes out from a convolution of the gluon propagatoc@ungling constant with
the pion wave functions, and, as happens in this case, for each ablgetivat we shall comment
in this work there will be different wave functions or scales involved in thewdation, however all
the experimental data will indicate the same range of values for the dynarhiocal mass, which
points to a strong phenomenological constraint on the SDE solution thalewssiaig. Notice that

1-Er

m  Alkofer et al.
—e— Cornwall mg=300 MeV
—A— Cornwall mg=700 MeV
Experimental Fit

Q’[GeV?Y]

Figure 2: Comparison of the experimental data fe(solid line) with the theoretical determination of the
form factor via DPT for a range of dynamical gluon masses. & show the results obtained with the SDE

solution of Ref.[6].

the purely perturbative result, obtained with the kernel giving by Eq.(8@3s not show such a
nice fit for the experimental data.

2.3 Hadronic cross section in a QCD-inspired model

According to a QCD-inspired model to compute hadronic scattering [22¢rtss section for
producing jets withpr > pr,;, (through the dominant procegg — gg) is proportional to

do,
e dadxgtaQgte Q) 28)
X1 X2 >4p3 /s

o9 = [, A 42
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whereg(x,Q?) is the gluon flux, and a minimum transversal momenttp)?fgmrp establish the re-
gion where perturbation theory can be applied. The standard calculasoimas the following
elementary partonic cross section for gluon-gluon scattering

2
Ogg($) U 9:%{0 6(5—np) (2.9)
wheremy andag are fitted parameters.
DPT allow us to compute elementary cross section, digg$) with IR finite quantities, where
My, ag and p%mm are substituted byng! We fitted thepp and pp scattering data keepingg as a
free parameter. Taking a 5% variation on the minix@/DOF value indicateng ~ 400350 MeV
(for details, see Ref.[18]). One of the fits to the experimental data caadreis Fig.(3). Again,
even considering the quite different calculations of Eq.(2.5) and Eqg.(2.8)amazing how the
observables that we discussed up to now lead to the same gluon massstggeting the DPT
scheme based on IR finite SDE solutions depending on a dynamical gluon Massover, the
two different fitting parameters of Eq.(2.9) were eliminated from the calculationr procedure!

—~ 120 -
o [
£ P my=400 MeV
5

opp

30: L T L TR L IR
10 10 10*
Vs (GeV)

Figure 3: Total cross section fopp (solid curve) andpp (dashed curve) scattering.

2.4 Non-leptonic annihilation B meson decays

The use of DPT can be exemplified by the diagrams of Fig.(4), which shosftaeent contri-
butions for the two-body non-leptonic annihilation B meson decays in therizaton approach.
DPT predicts that to each gluon exchange depicted in the different motuillecorrespond to a
dressed gluon propagator that enters into the amplitude calculation, asvieltaupling constant,
i.e. the perturbativers and gluon propagator were substituted by the prodi@?) = g?A(Q?).
In the standard perturbative QCD calculation we are faced with end-gwitgences due to soft
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gluon emission and an arbitrary cutoff is introduced in the amplitude:
dx
/X ~In —(l—i—pe“") 0<p<1. (2.10)

This divergence is eliminated in the DPT scheme with IR finite Green’s functions

Figure 4: Perturbative diagrams leading to two-body non-leptonitlstation B decays

Some branching ratios of these two-body non-leptonic annihilation B mesayslare shown
in Table (1). The results of Table (1) contain only the leading twist contributamd we may
expect an increase in the branching ratio values when the higher twisibctions are added. A
discussion on the meson wave functions dependence as well as on ibe ¢hB meson scales
(U =my or u =my/2) can be found in Ref.[19]. The important point is that the best desaniptio
of the data is giving by an IR gluon propagator and coupling constantémbe associated to a
dynamically generated gluon mass. A full picture of these decays calculai¢atally perturbative
approach is not so compelling as the one presented here, besides thatfadthough small, there
is a dependence on tlael hoccutoff discussed in Eq.(2.10).

Table 1: Branching ratios for non-leptonic annihilatiddecays obtained with the infrared finite gluon
propagator and coupling constant discussed in the begjrofiBection 2. These values were obtained with
my = 500MeV. A complete list of the results and experimental d¢atabe found in Ref.[19].

Decay channels my = 500MeV Experiment

r(BY — ) x 10 1.58 <136
Pr(B — KTK™) x 108 7.18 4+15+8

%r(BY — D~ mt) x 10° 1.54 —

%r(BY — D) x 107 1.88 -

Pr (B — DgK™) x 10° 1.98 294+0.4+0.2

Pr(By — DIK™) x 10° 0.99 <11x1C
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2.5 A QCD-Pomeron model

Hadronic cross sections can also be computed in the scope of Regge Wisere the ampli-
tude for elastic proton-proton scattering at high energy is dominated byotimern. Landshoff
and Nachtmann (LN) proposed a QCD-Pomeron model where the basic ¢tostercture is rep-
resented by two non-perturbative gluon exchange, where the glsoa fiaite correlation length
[11]. The differential proton-proton cross section can be writing as

p+39 P-3a  P*aq - 3q
e e T
| | 1 1.0 / 1
k+34 kK-24 k+30 ¢ K2
e o e e
I I /\
I I /N
RN S E— R A S —
p-1q P+ 3q p—3q P+ 34

Figure 5: T; andT,. Two-gluons exchange model for the Pomeron.

do IA(s,1)]2
dt — 16ms? (2.11)
where the amplitudé(s,t) is giving by the diagrams shown in Fig.(5).
A(st) =18a2 [Ty — T, . (2.12)

Several results obtained for the LN model in the DPT scheme can be folref.[20] as well
as in some of the references [16]. Actually the LN proposal match exaititie DPT ideas, de-
manding the introduction of an IR finite non-perturbative gluon propagatdrcoupling constant.
We just show the result for the differential proton-proton elastic crestian at,/(s) = 53GeV
depicted in Fig.(6). In Fig.(6) we compare different SDE solutions and dteeid better explained
by a gluon propagator and coupling constant associated to a gluon rabesefz(400) MeV. No-
tice that the two gluon exchange model can explain the elastic scattering amhalt. For large
transferred momentum it is necessary to add a three gluon exchange withitepgparity. Again
we do have different wave functions and scales that have to be infddndhe calculation (see
Ref.[20]), but we still have a good agreement with the data for the sarmge Hrdynamical gluon
masses.

3. DPT at higher orders of the perturbative expansion

The question that we would like to discuss in this section is that if we can haegsprphe-
nomenological tests of thes and gluon propagator infrared behavior at higher orders of the per-
turbative expansion. This type of test together with the ones discussed imehious section can
definitively provide a strong test for the SDE solutions. These SDE sotutian be applied in the
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1000 T T T T T T

Differential pp elastic cross section
—a— CORNWALL mg=370 MeV
100 —e— ALKOFER

« BREAKSTONE et al. data

o
|

do/dt(mb/GeV?)
1

0.1+

0.01 T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6: Differential pp elastic cross section agf(s) = 53GeV computed within the Landshoff—
Nachtmann model for the Pomeron, using different inframmapdings and gluon propagators obtained from
DSE solutions.

DPT scheme at the loop level, however this is not a trivial matter and redhegesse of the pinch
technique [7] to disentangle the different contributions that come frorardifit Green’s functions
inside loops. What we will present here is a preliminary result of the DRliGgtion in the case
of the Bjorken sum rule and many aspects of this calculation are still in Ee{@28].

It has been pointed out that the Bjorken sum rule [24] could be usedow &re os behavior
up to low energies. This is, for instance, the point of view followed in RE}.{&ing the idea of an
effective coupling, and also of Ref.[26] in the case of analytic pertiobhdheory. Therefore this
will be a perfect arena to test the behavior of the infrared quantities thaliseussed up to now.
The polarized Bjorken sum rule can be written as [24]

1
rPN(@) =Sy = [ dx[gfx Q) - gl(x @) @Y

wheregf(gg) is the first spin structure function for the proton (neutron), which werasued
recently at quite lowQ? [27].

The QCD correction to this sum rule up to the fourth order in the strong cauptinstantrg
for massless particles and effective number of flavgrs- 3 is given by [28]

2 2 2
M%) = %j(Q%) = ?13 g\/j [1_ as(r([? ) _3'58<GS(7? )>
3 4
—20.21(“5(7?2)> —1300(“3(7‘32)> +o ] (3.2)

wherega andgy are constants appearing in the nucleon beta decay. In principle theregptal
data on the structure functions can be used to determif@?).

In our preliminary calculation we have not considered the effect of myre masses inside
the loops (we expect that at leading order this effect is small). We aldeatgmpwer corrections
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to the Bjorken sum rule, because many calculations have shown that flieeiriefnegligible, but
we also believe that the power corrections will be softened by the inffariéel gluon propagator
behavior [23]. Eq.(3.2) was solved up to ordet in order to obtain the value of the gluon mass
scale using the experimental data §f "(Q?) obtained at Jlab [27]. We show our result in Fig.(7),
which is fitted by Eq.(2.4) with a dynamical gluon mass value equaigte- &'(300— 400) MeV,
that is compatible with previous phenomenological determinationg, §16]. The match between

0.8 T T T T Ty T T LENLSLNL L LE |
: = Jlab 2008

o Jlab 2004

o PDG M

0,7
- Perturbative coupling
_— mg=380 MeV A=300 MeV

0,6 H
— mg=335 MeV A=250 MeV

0,54

a(q)

0,34

0,2

0,1 +rr————r————rry

Figure 7: Effective coupling constant extracted from the experiraktata ofl” f‘”(Qz).

the effective chargesq with the experimental data is impressive. We stress that any other different
behavior for the infrared coupling constant visibly do not show sudkefit for the experimental
data. There are many points that still need analysis in this procedurewayld be interesting

to have a formal demonstration of the DPT scheme realization in the case ofdtiemBsum

rule through the use of the pinch technique, b) Dynamical gluon and gquaskes, even if their
effect are small inside loops, should be considered in future worky 3iheuld improve the match

in Fig.(7) of the experimental data with the non-perturbative coupling in thee\X f&@gion and

¢) Higher order corrections should be fully calculated in the DPT scemmarawder to confirm

our order of magnitude estimates. These calculations certainly will be quiteuttifiut they are
necessary once we consider the good description of the experimetatahdavn in Fig.(7).

4. Summary

SDE solutions as well as lattice simulation of pure glue QCD are indicating thatiube g
propagator and coupling constant are infrared finite. In Ref.[10] are see a nice agreement
between these non-perturbative methods, where the lattice data for thepghmagator is fitted
by a SDE solution associated with a dynamically generated gluon mass. Wetlshioseveral
strong interaction observables computed within perturbative QCD improwéuetknowledge of
the Green’s functions, at the full range of momenta in the DPT scheme,ralgd® strong support

10
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for the SDE and lattice results. The full scenario works so well that webeaely neglect the
possible existence of the dynamical mass generation mechanism in QCD.

All the examples of hadronic phenomenology that we have discussecetiréescribed by a
gluon propagator and strong coupling constant that are dependantymamically generated gluon
mass. No matter we deal with improved perturbative QCD calculations or QQirédsmodels
we verify that the experimental data is fitted with a dynamical gluon mass sgateO(2/\qcp).

In many cases this mass scale helped us to reduce the number of arbiteangfes in the calcu-
lations. The tests that we performed are non-trivial in the sense thatgbely from the calculation
of physical quantities where the gluon propagator or product of gratpas are integrated weighted
by different functions (involving different mass scales), and all ¢jtiea show agreement with the
experimental data for gluon masses that are in the same range of masieweg@rey Cornwall
several years ago [5]. It is hard to believe that such coincidenceoiglatbus one.

A preliminary account of a phenomenological test of SDE solutions at thelésel was dis-
cussed in Section 3. The simple analysis introduced there is giving a sighti¢tDPT procedure,
with the inclusion of IR finite Green’s functions, is quite promising, and dethitsiathis approach
shall be presented elsewhere [23].
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