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Recent progress in the solution of Schwinger-Dyson equations (SDE), as well as lattice simulation

of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared (IR) finite.

We discuss how this non-perturbative information can be introduced into the QCD perturbative

expansion in a consistent scheme, showing some examples of tree level hadronic reactions that

successfully fit the experimental data with the gluon propagator and coupling constant depending

on a dynamically generated gluon mass. This infrared mass scale acts as a natural cutoff and

eliminates some of thead hocparameters usually found in perturbative QCD calculations. The

application of these IR finite Green’s functions in the case of higher order terms of the perturbative

expansion is commented.
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1. Introduction

Many years ago Mandelstam obtained a solution of the SDE for the gluon propagator, in the
Landau gauge and in the case of pure gauge QCD, that behaved as 1/k4 in the infrared [1]. This
solution was named as a “confined gluon solution" because it naturally leadsto a linear confining
potential. This result motivated intense phenomenological studies where the IR enhanced propaga-
tor was substituted by more tractable functions, however these functions were still peaked at origin
of momenta. Examples of this program can be found in the review of Ref.[2].

Although not widely diffused, it is mentioned in Mandelstam’s paper about thepossible ex-
istence of a massive solution for the gluon propagator, but this solution wasdiscarded since the
beginning in his approach. Within the same approximation [3] but with one improved three gluon
vertex function [4] it can be shown that this solution indeed exists in the Landau gauge. Of course,
such soft IR behavior certainly requires a more subtle confinement explanation [5].

The problem with a large part of the more recent SDE calculations for the gluon propagator
(for a review, see [6]) and the ones discussed above is that they do not lead to transverse solu-
tions as required by gauge invariance, and it seems that the only way to have the Schwinger’s
mechanism (gauge invariant) realization in non-Abelian gauge theories is rearranging the SDE
diagrams through the pinch technique [5, 7]. This was, for the first time, devised by Cornwall
in 1982 [5], who obtained a gauge invariant solution for the gluon propagator that behaves as
1/[k2 + m2(k2)]. As k2 → 0 the functionm2(k2) was interpreted as a dynamical gluon mass with
the limit m2(k2 → 0) = m2

g. In this picture the coupling constant is also IR finite with a fixed point
behavior described by

ᾱsd(0) ≡
1

4πbln[(4m2
g)/Λ2]

, (1.1)

whereΛ = ΛQCD is the QCD scale where the perturbative coupling becomes singular. Recent lattice
QCD simulations present clear evidence for the dynamical generation of a gluon mass (a long list
of references about these simulations can be found in Ref.[8] and a recent simulation can be seen
in Ref.[9]), with the SDE result for a massive gluon fitting nicely the lattice data [10].

There are several reasons to review the strong interaction phenomenological calculations on
the light of IR finite gluon propagator and coupling constant. A simple one is that in this scheme
we get rid of the Landau singularity in the coupling constant, which introducesingularities in
the physical amplitudes that do not correspond to the expected physical behavior. There are also
singularities in QCD amplitudes, like the one in the two-gluon QCD Pomeron model [11], that
disappear when dealing with a dynamically generated gluon mass. The dynamical gluon mass
also introduces a natural IR cutoff which may substitute the one that is always present in many
perturbative QCD calculations. Moreover it is usually argued that the perturbative QCD series can
be reorganized in order to ameliorate its behavior, but, most important of all, this optimization of
the perturbative expansion is quite dependent on the infrared behaviorof the coupling constant
[12], and the dynamical mass generation scheme is precisely giving us onehint of which direction
to go in order to improve the perturbative series. Finally, besides all these reasons, the fact that IR
finite Green’s functions with a dynamically generated gluon mass scale provide a better agreement
between experiment and theory, as will be shown here, corroborates the SDE and lattice results.
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As we shall discuss in the next section, when presenting the expressionsfor the gluon propa-
gator and coupling constant, the SDE solutions cannot determine themg value, and the best we can
do is to determine the ratiomg/Λ. We will show that several perturbative calculations can be im-
proved with the knowledge of propagator and coupling in the full range ofmomenta, and in some
cases the experimental data can only be fitted with the help of these IR finite quantities. In Section
2 we discuss that the relevant scheme to introduce these non-perturbative information into the QCD
perturbative expansion is the one named Dynamical Perturbation Theory (DPT), then we present
examples of phenomenological calculations that make use of IR finite Green’s functions. Different
observables are computed as a function ofmg and all data indicate a small range for the dynamical
gluon mass, what is impressive if we consider that our examples involve different hadronic mass
scales or wave functions. In Section 3 we comment how this procedure canbe extended to compute
higher order terms of the perturbative expansion and we make a summary in Section 4.

2. DPT at tree level

2.1 DPT and IR finite SDE solutions

A prescription of how the non-perturbative SDE solutions can be insertedinto the perturbative
QCD expansion was proposed by Pagels and Stokar many years ago, in the approach denominated
DPT [13]. In their scheme the amplitudes that do not vanish to all orders in perturbation theory
are given by their free field values, while amplitudes that vanish asλ ∝ e−1/g2

are retained, and
possibly dealt with in an expansion ingnλ . The work of Ref.[13] was particularly concerned with
the effect of a dynamically generated quark mass, but as we now know from the SDE solutions that
the gluon and coupling constant also have an infrared finite value, we canextend their formulation
and generalize the perturbative expansion using the quark and gluon propagators with a dynamical
mass and the IR finite coupling constant. This means that we should perform perturbation theory
with the dressed quark and gluon propagators and the effective charge (dependent on the gluon
mass).

The SDE solutions and the lattice results were discussed at length in this workshop [15], there-
fore we will not enter into details about the solutions and will just present thegluon propagator and
coupling constant in the case that QCD generates a dynamical gluon mass, otherwise we mention
in the references where a different SDE solution is used. We consider agluon propagator that will
have the form

ı∆µν(q) = Pµν∆(q)+ξ
qµqν

q4 ; Pµν = −gµν +
qµqν

q2 , (2.1)

where∆(q) is the gauge invariant scalar part of the gluon propagator, which in Euclidean space has
the form

∆(Q2) ∝
1

Q2 +m2
g(Q2)

. (2.2)

The gluonic SDE solutions allow us to write a new propagator∆̂−1(Q2) which absorbs all the
renormalization group logs, exactly as happens in QED with the photon self-energy, and form the
productd̂(Q2) = g2∆̂(Q2) which is a renormalization group invariant. The dynamical gluon mass
(m2

g(Q
2)) is given by a complicated expression falling with the momentum as 1/Q2 [14], and it can
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be simply approximated by [4]

m2
g(Q

2) =
m4

g

Q2 +m2
g

, (2.3)

wheremg ≈ O(1.2−2)Λ, with Λ = ΛQCD ≈ 300 MeV. As this is still a complicated expression to
take into account when calculating loops, in practical calculations, the bestwe can do is to assume
m2

g(Q
2) ≈ m2

g. A simple fit for the coupling constant that is factored out in this procedureis given
by [5]

ᾱsd(q
2) =

1
4πbln[(4m2

g−q2− ıε)/Λ2]
, (2.4)

whereb = (33−2nf )/48π2. Eq.(2.4) clearly shows the existence of the IR fixed-point shown in
Eq.(1.1). It must be stressed that the fixed point shown in Eq.(1.1) does not depend on a specific
process, it is uniquely obtained as we fixΛ and, in principle, it should be exactly determined if we
knew how to solve QCD. The quantitŷd(Q2) is the one that appear in all loop calculations. As
in QED, where the only ultraviolet divergences are associated with the vacuum polarization, and
affect the renormalization of the coupling constant, in QCD, as the pinch technique is applied and
the vacuum polarization is summed, the only difference is that instead of a renormalized coupling
and a massless propagator it is a factor liked̂(Q2) that appears in the calculation, indicating the
existence of a massive propagator and an IR finite charge.

There are several examples of the use of DPT with the propagator and coupling constant
discussed above [16] apart the ones that will be commented in the next subsections [17, 18, 19, 20],
where the nice description of the experimental data within this procedure canbe perceived.

2.2 Pion form factor

The asymptotic pion form factor is predicted in perturbative QCD, according to Brodsky and
Lepage [21], as

Fπ(Q2) =
∫ 1

0
dx

∫ 1

0
dyφ ∗(y,Q̃y)TH(x,y,Q2)φ(x,Q̃x) , (2.5)

whereQ̃x = min(x,1−x)Q andQ is the 4-momentum in Euclidean space transferred by the photon.
The functionφ(x,Q̃x) is the pion wave function, that gives the amplitude for finding the quark or
antiquark within the pion carrying the fractional momentumx or 1− x, respectively. The func-
tion TH(x,y,Q2), is the hard-scattering amplitude that is obtained by computing the quark-photon
scattering diagrams shown in Fig.(1). The perturbative kernelTH is giving by

TH(x,y,Q) =
64π
3Q2

{

2
3

αs[(1−x)(1−y)Q2]

(1−x)(1−y)
+

1
3

αs(xyQ2)

xy

}

, (2.6)

while in the case of DPT the gluon propagator and coupling constant are exchanged by the dressed
(non-perturbative) functions:

TH(x,y,Q2) =
64π

3

[

2
3

ᾱsd(K
2)∆(K2)+

1
3

ᾱsd(P
2)∆(P2)

]

, (2.7)

whereK2 = (1− x)(1− y)Q2 andP2 = xyQ2. The details of the calculation, as the dependence
on the pion wave functions and other quantities, can be found in Ref.[17].The comparison of the

4



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
3
1

QCD phenomenology with SDE solutions A. A. Natale

Figure 1: The leading-order diagrams that contribute to the pion formfactor.

theoretical result with the experimental data can be seen in Fig.(2). The important point to notice
is that this result comes out from a convolution of the gluon propagator andcoupling constant with
the pion wave functions, and, as happens in this case, for each observable that we shall comment
in this work there will be different wave functions or scales involved in the calculation, however all
the experimental data will indicate the same range of values for the dynamical gluon mass, which
points to a strong phenomenological constraint on the SDE solution that we are using. Notice that

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0,01

0,1

1

 

 

F π(
Q

2 )

Q2[GeV2]

 Alkofer et al.
 Cornwall mg=300 MeV
 Cornwall mg=700 MeV
 Experimental Fit

Figure 2: Comparison of the experimental data forFπ (solid line) with the theoretical determination of the
form factor via DPT for a range of dynamical gluon masses. We also show the results obtained with the SDE
solution of Ref.[6].

the purely perturbative result, obtained with the kernel giving by Eq.(2.6), does not show such a
nice fit for the experimental data.

2.3 Hadronic cross section in a QCD-inspired model

According to a QCD-inspired model to compute hadronic scattering [22], thecross section for
producing jets withpT > pTmin (through the dominant processgg→ gg) is proportional to

σ jet(s) =
∫

p2
Tmin

dp2
T

dσ̂gg

dp2
T

∫

x1x2>4p2
T/s

dx1dx2g(x1,Q
2)g(x2,Q

2) (2.8)
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whereg(x,Q2) is the gluon flux, and a minimum transversal momentum (p2
Tmin

) establish the re-
gion where perturbation theory can be applied. The standard calculation assumes the following
elementary partonic cross section for gluon-gluon scattering

σ̂gg(ŝ) ∝
9πα2

0

m2
0

θ(ŝ−m2
0) , (2.9)

wherem0 andα0 are fitted parameters.
DPT allow us to compute elementary cross section, likeσ̂gg(ŝ) with IR finite quantities, where

m0, α0 and p2
Tmin

are substituted bymg! We fitted thepp and pp̄ scattering data keepingmg as a
free parameter. Taking a 5% variation on the minimalχ2/DOF value indicatemg ≈ 400+350

−100 MeV
(for details, see Ref.[18]). One of the fits to the experimental data can be seen in Fig.(3). Again,
even considering the quite different calculations of Eq.(2.5) and Eq.(2.8), it is amazing how the
observables that we discussed up to now lead to the same gluon mass range,supporting the DPT
scheme based on IR finite SDE solutions depending on a dynamical gluon mass.Moreover, the
two different fitting parameters of Eq.(2.9) were eliminated from the calculationin our procedure!

Figure 3: Total cross section forpp (solid curve) and ¯pp (dashed curve) scattering.

2.4 Non-leptonic annihilation B meson decays

The use of DPT can be exemplified by the diagrams of Fig.(4), which show thedifferent contri-
butions for the two-body non-leptonic annihilation B meson decays in the factorization approach.
DPT predicts that to each gluon exchange depicted in the different pictures will correspond to a
dressed gluon propagator that enters into the amplitude calculation, as well as its coupling constant,
i.e. the perturbativeαs and gluon propagator were substituted by the productd̂(Q2) = g2∆̂(Q2).
In the standard perturbative QCD calculation we are faced with end-pointdivergences due to soft
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gluon emission and an arbitrary cutoff is introduced in the amplitude:

∫

dx
x

= ln
mB

Λh
(1+ρeiφ ) , 0≤ ρ ≤ 1 . (2.10)

This divergence is eliminated in the DPT scheme with IR finite Green’s functions.

a) b)

b̄

q2

M2

M1

q
q̄2

q̄1

q1

G

d)c)

Figure 4: Perturbative diagrams leading to two-body non-leptonic annihilation B decays

Some branching ratios of these two-body non-leptonic annihilation B meson decays are shown
in Table (1). The results of Table (1) contain only the leading twist contribution, and we may
expect an increase in the branching ratio values when the higher twist contributions are added. A
discussion on the meson wave functions dependence as well as on the choice of B meson scales
(µ = mb or µ = mb/2) can be found in Ref.[19]. The important point is that the best description
of the data is giving by an IR gluon propagator and coupling constant thatcan be associated to a
dynamically generated gluon mass. A full picture of these decays calculatedin a totally perturbative
approach is not so compelling as the one presented here, besides the fact that, although small, there
is a dependence on thead hoccutoff discussed in Eq.(2.10).

Table 1: Branching ratios for non-leptonic annihilationB decays obtained with the infrared finite gluon
propagator and coupling constant discussed in the beginning of Section 2. These values were obtained with
mg = 500MeV. A complete list of the results and experimental datacan be found in Ref.[19].

Decay channels mg = 500MeV Experiment

Br(B0
s → π+π−)×107 1.58 < 13.6

Br(B0
d → K+K−)×108 7.18 4±15±8

Br(B0
s → D−π+)×106 1.54 –

Br(B0
s → D+π−)×107 1.88 –

Br(B0
d → D−

s K+)×105 1.98 2.9±0.4±0.2

Br(B−
d → D+

s K−)×108 0.99 < 1.1×105

7



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
3
1

QCD phenomenology with SDE solutions A. A. Natale

2.5 A QCD-Pomeron model

Hadronic cross sections can also be computed in the scope of Regge theory, where the ampli-
tude for elastic proton-proton scattering at high energy is dominated by the Pomeron. Landshoff
and Nachtmann (LN) proposed a QCD-Pomeron model where the basic Pomeron structure is rep-
resented by two non-perturbative gluon exchange, where the gluon has a finite correlation length
[11]. The differential proton-proton cross section can be writing as

p
2
1+ q

2
1k+ q

2
1p+ q 2

1p+ q

p
2
1

2
1k+ q2

1 q

2
1 q

2
1

2
1 q

2
1 q

2
1 q + qp

p p

p

k k

q

Figure 5: T1 andT2. Two-gluons exchange model for the Pomeron.

dσ
dt

=
|A(s, t)|2

16πs2 , (2.11)

where the amplitudeA(s, t) is giving by the diagrams shown in Fig.(5).

A(s, t) = ıs8α2
s [T1−T2] . (2.12)

Several results obtained for the LN model in the DPT scheme can be found inRef.[20] as well
as in some of the references [16]. Actually the LN proposal match exactly with the DPT ideas, de-
manding the introduction of an IR finite non-perturbative gluon propagatorand coupling constant.
We just show the result for the differential proton-proton elastic cross section at

√

(s) = 53GeV
depicted in Fig.(6). In Fig.(6) we compare different SDE solutions and the data is better explained
by a gluon propagator and coupling constant associated to a gluon mass scale ofO(400)MeV. No-
tice that the two gluon exchange model can explain the elastic scattering only atsmallt. For large
transferred momentum it is necessary to add a three gluon exchange with opposite parity. Again
we do have different wave functions and scales that have to be introduced in the calculation (see
Ref.[20]), but we still have a good agreement with the data for the same range of dynamical gluon
masses.

3. DPT at higher orders of the perturbative expansion

The question that we would like to discuss in this section is that if we can have precise phe-
nomenological tests of theαs and gluon propagator infrared behavior at higher orders of the per-
turbative expansion. This type of test together with the ones discussed in the previous section can
definitively provide a strong test for the SDE solutions. These SDE solutions can be applied in the

8
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 ALKOFER
 BREAKSTONE et al. data

Figure 6: Differential pp elastic cross section at
√

(s) = 53GeV computed within the Landshoff–
Nachtmann model for the Pomeron, using different infrared couplings and gluon propagators obtained from
DSE solutions.

DPT scheme at the loop level, however this is not a trivial matter and requiresthe use of the pinch
technique [7] to disentangle the different contributions that come from different Green’s functions
inside loops. What we will present here is a preliminary result of the DPT application in the case
of the Bjorken sum rule and many aspects of this calculation are still in progress [23].

It has been pointed out that the Bjorken sum rule [24] could be used to know theαs behavior
up to low energies. This is, for instance, the point of view followed in Ref.[25] using the idea of an
effective coupling, and also of Ref.[26] in the case of analytic perturbation theory. Therefore this
will be a perfect arena to test the behavior of the infrared quantities that we discussed up to now.
The polarized Bjorken sum rule can be written as [24]

Γp−n
1 (Q2) = SB j =

∫ 1

0
dx

[

gp
1(x,Q

2)−gn
1(x,Q

2)
]

, (3.1)

wheregp
1(g

n
1) is the first spin structure function for the proton (neutron), which were measured

recently at quite lowQ2 [27].
The QCD correction to this sum rule up to the fourth order in the strong coupling constantαs

for massless particles and effective number of flavorsnf = 3 is given by [28]

Γp−n
1 (Q2) = SB j(Q

2) =
1
6

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

[

1−
αs(Q2)

π
−3.58

(

αs(Q2)

π

)2

−20.21

(

αs(Q2)

π

)3

−130.0

(

αs(Q2)

π

)4

+ ...

]

, (3.2)

wheregA andgV are constants appearing in the nucleon beta decay. In principle the experimental
data on the structure functions can be used to determineαs(Q2).

In our preliminary calculation we have not considered the effect of dynamical masses inside
the loops (we expect that at leading order this effect is small). We also neglect power corrections

9
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to the Bjorken sum rule, because many calculations have shown that their effect is negligible, but
we also believe that the power corrections will be softened by the infraredfinite gluon propagator
behavior [23]. Eq.(3.2) was solved up to orderα4 in order to obtain the value of the gluon mass
scale using the experimental data ofΓp−n

1 (Q2) obtained at Jlab [27]. We show our result in Fig.(7),
which is fitted by Eq.(2.4) with a dynamical gluon mass value equal tomg = O(300−400)MeV,
that is compatible with previous phenomenological determinations ofmg [16]. The match between

0,1 1 10 100
0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

 

 

  Jlab 2008
  Jlab 2004
  PDG 
   Perturbative coupling
   mg=380 MeV =300 MeV
   mg=335 MeV =250 MeV

(q
)

q [GeV]

Figure 7: Effective coupling constant extracted from the experimental data ofΓp−n
1 (Q2).

the effective chargēαsd with the experimental data is impressive. We stress that any other different
behavior for the infrared coupling constant visibly do not show such a nice fit for the experimental
data. There are many points that still need analysis in this procedure: a) Itwould be interesting
to have a formal demonstration of the DPT scheme realization in the case of the Bjorken sum
rule through the use of the pinch technique, b) Dynamical gluon and quarkmasses, even if their
effect are small inside loops, should be considered in future work. They should improve the match
in Fig.(7) of the experimental data with the non-perturbative coupling in the 1 GeV region and
c) Higher order corrections should be fully calculated in the DPT scenarioin order to confirm
our order of magnitude estimates. These calculations certainly will be quite difficult but they are
necessary once we consider the good description of the experimental data shown in Fig.(7).

4. Summary

SDE solutions as well as lattice simulation of pure glue QCD are indicating that the gluon
propagator and coupling constant are infrared finite. In Ref.[10] we can see a nice agreement
between these non-perturbative methods, where the lattice data for the gluon propagator is fitted
by a SDE solution associated with a dynamically generated gluon mass. We showthat several
strong interaction observables computed within perturbative QCD improved by the knowledge of
the Green’s functions, at the full range of momenta in the DPT scheme, also provide strong support

10
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for the SDE and lattice results. The full scenario works so well that we canbarely neglect the
possible existence of the dynamical mass generation mechanism in QCD.

All the examples of hadronic phenomenology that we have discussed are well described by a
gluon propagator and strong coupling constant that are dependent ona dynamically generated gluon
mass. No matter we deal with improved perturbative QCD calculations or QCD inspired models
we verify that the experimental data is fitted with a dynamical gluon mass scalemg ≈O(2ΛQCD).
In many cases this mass scale helped us to reduce the number of arbitrary parameters in the calcu-
lations. The tests that we performed are non-trivial in the sense that they result from the calculation
of physical quantities where the gluon propagator or product of propagators are integrated weighted
by different functions (involving different mass scales), and all quantities show agreement with the
experimental data for gluon masses that are in the same range of masses predicted by Cornwall
several years ago [5]. It is hard to believe that such coincidence is a fortuitous one.

A preliminary account of a phenomenological test of SDE solutions at the loop level was dis-
cussed in Section 3. The simple analysis introduced there is giving a signal that the DPT procedure,
with the inclusion of IR finite Green’s functions, is quite promising, and details about this approach
shall be presented elsewhere [23].
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