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The study of dynamical gluon mass generation at the levetbivéger-Dyson equation involves
a delicate interplay between various field-theoretic magms The underlying local gauge in-
variance remains intact by resorting to the well-known Sidger mechanism, which is assumed
to be realized by longitudinally coupled bound state pgdesduced by the non-perturbative dy-
namics of the theory. These poles are subsequently incimdethe Schwinger-Dyson equation
of the gluon propagator through the three-gluon vertexegating a non-vanishing gluon mass,
which, however, is expressed in terms of divergent seagtdbrals. In this talk we explain how
such divergences can be eliminated completely by virtueafaacteristic identity, valid in di-
mensional regularization. The ability to trigger this iigndepends, in turn, on the details of the
three-gluon vertex employed, and in particular, on the eway the bound state poles are incor-
porated. A concrete example of a vertex that triggers theeafientioned identity is constructed,
the ensuing cancellation of all seagull divergences isieitigl demonstrated, and a finite gluon
mass is obtained. Due to the multitude of conditions thattrhasimultaneously satisfied, this
construction appears to be exclusively realized within BieBFM framework. The resulting
system of integral equations gives rise to a gluon mass ibptays power-law running and an
effective charge which, due to the presence of the gluon niieesezes in the infrared at a finite
(non-vanishing) value.
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Gluon masses without seagull divergences

1. Introduction

The gluon is massless at the level of the fundamental QCDdrayign, and remains massless
to all order in perturbation theory. However, as Cornwatied in the early eighties [1], the
non-perturbative QCD dynamics generate an effective, nmbume-dependent mass for the gluons,
without affecting the locaBU(3). invariance, which remains intact.

Given that the gluon mass generation is a purely non-petubeffect, the natural framework
to study it, in the continuum, are the Schwinger-Dyson dquat(SDESs) of the theory. At the level
of the SDESs the generation of such a mass is associated widxtstence of infrared finite solutions
for the gluon propagator [1, 2, 3]. In covariant gauges, thiewy propagatord,,(q), has the form

quQv

Ay (g) = —i Puv(Q)A(q2)+E ¢ |

(1.1)

whereé denotes the gauge-fixing parameter, apd(B) = guy — quav /g?. The scalar factoh(g?)

is given byA~1(?) = g? +iM(q?), whereM,,(a) = Py (g)M(g?) is the gluon self-energy; the
dimensionless vacuum polarizatioRl,(g?), is defined a$1(g?) = ¢°M(q?). So, in general, one
looks for solutions wittA=1(0) > 0. Such solutions may be fitted by “massive” propagators @f th
form A=1(g?) = ¢? + n?(g?); mP(¢?) is not “hard”, but depends non-trivially on the momentum
transfergq.

The pinch technique (PT) propagator, usually denote&(lnﬁ) in the literature [1, 4], is the
ideal quantity to study in this context, because it is incej@mt of the gauge-fixing parametér)(
Therefore, any statement about its infrared behavior, anghrticular the generation of a gluon
mass, is bound to be free of gauge artefacts. In recent studigvever, the tendency has been to
focus on the gluon propagator in a fixed gauge, such as theentiomal Landau gauge (= 0),
instead of the privileged Feynman gaude & 1) of the background field method (BFM) [5],
which, quite remarkably, reproduces automatically the Bgults (third item in [4]). The main
reason for this less optimal choice is the need to comparaimgfally the SDE results with those
obtained from lattice studies, which, almost exclusivalg carried out in the Landau gauge.

What the latest large-volume lattice studies reveal istatydear: The gluon propagator of
pure Yang-Mills is infrared finite, both i8U(2) [6] and SU(3) [7]. Interestingly enough, these
recent lattice findings, striking as they may be, do not daristthe first indication of this very
characteristic behavior; several earlier simulations toashd qualitatively similar results, even in
gauges other than the Landau ( see, e.g., [8]).

The aforementioned lattice results, in addition to whatemedifications they may induce to
other formalisms aspiring to describe the infrared sect@©@D, they present a serious challenge
even to the practitioners of the gluon mass generation ialbeleasant one). Indeed, the SDE
analysis must be further refined, and freed of whatever majaoninor theoretical shortcomings
one has been accustomed to live with in the past. The purpotgsotalk is to report recent
progress in this direction, and in particular on the solutaf the annoying problem of seagull
divergences [9], which has afflicted this approach from trst lay of its invention [1]. Turns out
that the elimination of the seagull divergences brings alaouadditional advantage, namely the
separation of the SDE into two coupled equations, furngshiniquely the running of the effective
charge and the gluon mass in the entire range of Euclideanemizm



Gluon masses without seagull divergences

2. Seagull divergences: a perennial nuisance to gluon massrgeration

In order to obtain massive solutiogauge-invariantly it is necessary to invoke the well-known
Schwinger mechanism [10]. The basic observation is thirisome reasor]l (g?) acquires a pole
at zero momentum transfer, then the vector meson becomesveaaven if the gauge symmetry
forbids a mass at the level of the fundamental Lagrangiadedd, it is clear that if the vacuum
polarizationM(g?) has a pole at? = 0 with positive residugu?, i.e. NM(q?) = u?/g?, then (in
Euclidean spacé)1(q?) = g+ p2. Thus, the vector meson becomes masgivé(0) = p?, even
though it is massless in the absence of interactigns Q). There isno physical principle which
would precludd(g?) from acquiring such a pole. Insdrongly-coupledheory like QCD this may
happen for purely dynamical reasons, since strong bindiag generate zero-mass bound-state
excitations [11]. The latter atike dynamical Nambu-Goldstone bosons, in the sense that tkey ar
massless, composite, almhgitudinally coupledbut, at the same time, they differ from Nambu-
Goldstone bosons as far as their origin is concerned: thayotloriginate from the spontaneous
breaking of any global symmetry [1].

Of course, in order to obtain the full dynamics, such as, faneple, the momentum-dependence
of the dynamical mass, one must turn eventually to the SDEgthaerns the corresponding gauge-
boson self-energy. The way the Schwinger mechanism isritedg) into the SDE is through the
form of the three-gluon vertex. The latter, even in the absesf mass generation, constitutes a
central ingredient of the SDE, and plays a crucial role iroesihg the transversality of the gluon
self-energy. Therefore, an important requirement for alftconsistent Ansatz used for that vertex
is that it should satisfy the correct Ward identity (WI) oetRT-BFM formulation, namely

0T pap = By p(k+0) — B 5(K). (2.1)

In addition, in order to generate a dynamical mass one mgsinas that the vertex contaily-
namical poleswhich will trigger the Schwinger mechanism when insertetd ithe SDE for the
gluon self-energy.

The point is that the full realization of the procedure metil above is very subtle. In particular,
even though the use of a three-gluon vertex containing mssgloles and satisfying the correct Wi
leads indeed to a transverse and infrared finite self-en@irgy A—1(0) # 0), as expected, the
actual value oA —1(0) has always been expressed in terms of divergent integrfalse dorm (see,
e.g.,[1, 2, 3])

AY0) =1 /k AK) + 2 /k KRA2(K), 2.2)

where, in dimensional regularization (DR]),= p?¢(2m)~9 [d9, with d = 4 — & the dimension
of space-time. This is not a problem, in principle, providbdt the divergent integrals appearing
on the rhs of (2.2) can be properly regulated and made finiténout introducing counterterms
of the form m§(A3,)A2, which are forbidden by the local gauge invariance of thedmental
QCD Lagrangian. Various regularization procedures oféasing sophistication have been tried
out over the years, but the resulting (regularizad}(0) remained theoretically ambiguous. Given
how nicely all other pieces of the puzzle fit together, thearlyihg impression has always been
that the “seagull problem” had to do with some (not fully ursieod) subtlety rather than some
intrinsic “need” of the theory to produce quadratic divarges.
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Figure 1: The “one-loop dressed” SDE for the photon self-energy.

3. The “seagull identity”: how to keep the photon masslessfyou must)

It is most instructive to understand what happens in a thedigre the seagull terms do not ap-
pear due to the self-interactions of a gauge boson that lgpsrad a mass dynamically, but rather
because the theory has scalar particles that are massikeedevel. These scalars interact with
the gauge boson, and contribute seagull terms to its vacwlanization. The question is: if the
gauge boson must remain massless, how do the seagull cioind disappear from that vacuum
polarization? To see how this happens, let us turn to scaid,Qvhere the aforementioned cir-
cumstances (massive scalars, must-be massless photoeabzed, and study the SDE governing
the photon self-energy.

At the “one-loop dressed” level the SDE for the photon sekgy reads (Fig. 1)

Muv(@) =& [ 1P 2007 (k+a)Ty +€ [ FR7 (k). @Y

where (k) is the fully-dressed propagator of the scalar field, is the fully dressed photon-
scalar vertex, whose tree-level expression is giver” g)ﬁ/: —i(2k+q)y. Moreover, the bare

quatrilinear photon-scalar vertex is given 5&?\3 = 2ig,v. The photon-scalar vertex,, and the
scalar propagata? are related by the Abelian all-order Wi

qQ'Ty=2k+a9) -2 k), (3.2)

It is fairly easy to demonstrate that, by virtue of (3.6J1,y(q) = 0, and thaf1(g?) reads

_oin2
N(c?) 2'e [/@ D(k+ QKT — d/@ ] (3.3)
Let us compute from (3.3) the one-loop expression6g?), to be denoted bl ™M (¢?).
M) = 357 | [~ )20 20(k+-0) 2 | 00 3.4
where 7 (k) = (k% —m?)~1. Taking the limitq — 0, we find
n (O)Zd_l / ZR(k /% . (3.5)

Of course, there is no doubt that the photon remains masgétigrbatively, i.e. we must have
thatl'l(l)(O) = 0. However, the way this requirement is realized is rathétlsu the rhs of (3.5)
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vanishes indeed, by virtue of an identity that is exact in D&mely

k2 d 1
./kmzszm’ (3.6)

Thus, the perturbative masslessness of the photon is glpliealized and self-consistently en-
forced within the DR. Eq.(3.6) may be cast in a form that idipalarly suggestive for the analysis

that follows, namely
0%(
2 O
/kk dk2 — 2/9 @3.7)

We now return to the general Eq.(3.3). In order to analyzeirithier we must furnish some
information about the form df ,. Of course, any meaningful Ansatz o, must satisfy the WI of
(3.2), or else the transversality B, (q) will be compromised from the outset. The form obtained
by Ball and Chiu [12], after “solving” the WI, under the addital requirement of not introducing
kinematic singularities, is (we omit the identically conasl part of the vertex)

(2k+q)y 5 [727 N k+9) -2 1K) . (3.8)

R CH e

This vertex, when substituted into (3.3), yields

- B
I‘I(qz)zi[/k(4k2—q2)gét+g§ . +2d [ 7 (k } (3.9)

Taking the limit of Eq.(3.9) ag — 0, using that

I(k+a)—2()  07(K)
ktoZ—k ok

n(O):;iTezl[/k 2dfk2 2/9 ] (3.11)

Of course, we must have that(0) = 0, given that there is nothing in the dynamics that could
possibly endow the photon with a mass; in particular, thewfufer's mechanism is “switched
off”, i.e. we have not introduced dynamical poles, and, gitlee form of (3.8), neither kinematic
ones, which might simulate the dynamical ones at the levill@ESDE. Thus, the rhs of (3. Ihust
vanish, and therefore, we must have that

/kdekz _—g/k 2(K), (3.12)

which is the non-perturbative generalization of (3.7).

Note a crucial point: the seagull terms appearing in (8af)notbe set to zero individually,
because the scalar propagator inside them is massivedglegdree-level): the only way to keep
the photon massless, is to employ (3.7), which cancels tlyatimst each other. For example, if the
term J, 2 (k) on the rhs were multiplied by any factor other th@y2) one would be stuck with
seagull divergences.

+0(9), (3.10)

we have that
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Figure 2: “One-loop dressed” gluonic graphs of the SDE for the PT-BRNbg self-energy.

4. Massive gluons: Schwinger mechanism and seagull identitn a delicate balance

Turns out that the construction presented in the previoosasegeneralizes in the context of
pure Yang-Mills theory, such as quarkless QCD, bnly within the PT-BFM formalism! As has
been explained in detail in the recent literature [2, 13js thtter formalism allows for a gauge-
invariant truncation of the SD series, in the sense thatésg@mves manifestly and at every step
the transversality of the gluon self-energy. Specificaldy, the case at hand, we will consider
only the “one-loop dressed” part of the gluon SDE that caorgta@jluons, shown in Fig. 2, leaving
out (gauge-invariantly!) the “one-loop dressed” ghosttabations and all “two-loop dressed”
diagrams. Note that the Feynman rules used to build this $Bssare those of the BFM [5]; in
particular, the external gluons (distinguished by the griesies attached to them) are treated as if
they were background gluons. As we will see in a moment, the fof these vertices is crucial
for obtaining from the SDE precisely the right combinatidrteyms (and with the correct relative
weights) that appears in (3.12).

In order to reduce the algebraic complexity of the problere, dvop the longitudinal terms
from the gluon propagators inside the integrals, i.e. wéAggt— —ig,gA. This does not compro-
mise the transversality dfl,,(q) provided that we do the same on the rhs of the WI satisfied by

vap, Namely we have simply

0'Tvap = A7 (k+0) — A7 (K)]gap (4.1)

instead of the full WI given in (2.1). Then, the SDE corresgliog to Fig. 2 reduces to

in2
i 2, 197Ca /~(0) Suap 2/
A7 (q)=q +2(d—1)[ kFWﬂA(k)A(kJrq)l' +2d kA(k) ) 4.2)
whereCy, the Casimir eigenvalue of the adjoint representation £ N for SU(N)]. The vertex
FLOQB(q, k,—k—q) is the bare three-gluon vertex in the Feynman gauge of the Bl 4

denotes its fully-dressed version.

The functionﬁ(q) appearing on the Ihs of (4.2) is the scalar part of the gluopggator in the
BFM, i.e. two background gluons enterindy(q) is related to the standa(q), defined in theR;
gauges, by means of the powerful identtyg)[1 + G(?)]2 = A(q), whereG(q?) is an auxiliary
two-point function [14], which, quite remarkably, coineflin the Landau gauge with the well-
known Kugo-Ojima function (see, e.g. talk of Daniele Binmsihese proceedings [16]). We will
next setG(q?) = 0, i.e. we effectively assume that, inside the quantum Ipfg) = A(q).
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Figure 3: The SDE for the three-gluon vertex. All kernels are oneiprirreducible, and the /g2 pole is
not kinematic but dynamical (purely non-perturbative)ygically it corresponds to a (composite) Goldstone
mode, necessary for maintaining the local gauge invariance

At this point enters the new ingredient: a judicious Ansatzifie three-gluon vertex which, in
addition to satisfying (4.1) will allow us to use the seagdéntity (3.12) and get a hon-vanishing
and finiteA=1(0).

To begin with, let us first writd—1(q) in the alternative form (in Minkowski space)

A1(q) = o*H *(q) — AP (q). (4.3)

The tree-level result foA~1(q) is recovered by settingl ~(q) = 1 andi@? = 0. Then, an appro-
priate Ansatz foil 4 is given by [9]
(k+9)*H*(k+0q) —KH*(K) ] =0

s = (k+0)2—K "wap T Vuap:

(4.4)

where the ternV,,g contains the non-perturbative contributions due to bostate poles associ-
ated with the Schwinger mechanism. Note that we must have

9"Vyap = [P(K) — AP(K+ )] 9agp (4.5)

in order for theﬂmﬁ of Eq. (4.4) to satisfy (by construction) the correct WI ofl(}

The Ansatz of (4.4) mimics that of Eq. (3.8) to the extent tthe first term contains the
right structure to produce, when inserted into the first termthe rhs of (4.2), the derivative term
appearing on the Ihs of (3.12). The rhs of (3.12) is alreadyethit is the second term on the rhs of
(4.2), originating directly from the seagull diagram).

Similarly, a simple Ansatz fov,, that captures the two essential characteristics of having a
(composite), longitudinally coupled poles, and satigfyihe WI of (4.5) is

Vuag =Viap +Viap: (4.6)
where
Ou [ - _
Vias = q—’é [mz(k) — P (k+ CI)] Gap » 4.7)

and with the transverse par; ap satisfyingq“vfl op = 0. We can write the vertex of (4.4) equiva-
lently as

A Y(k+q) —Al(k)] )

i pap = [ (k+q)2— K2 vap +Vyagp, (4.8)
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with
VIJUB :Vuaﬁ +VraB7 (49)
where 2 2
P (K+ ) — AP(K)
ap = (2K+0)y (Kt q?—k2 JapB - (4.10)
The terrﬁ\/&mB is a residual piece, acting as an additional (non-pertivdatertex term, originating

from forcing the vertex to assume the form of (4.8). This laay of writing vaf makes the use of
the basic identity of Eq.(3.12) immediate. Thus, after ¢hesmarrangements, we have that the final
non-perturbative effective verték, ,g must be transverse/'V 5 = 0.

Substituting for thé H2# on the rhs the expression given in (4.8) we obtain after srafgebra

2
BHEP) = G 5 M@+ (@) (@.1)
with
r|(q)=(7d—8)q2/kA§::Jr [/k2 k2 2/A ] (4.12)
and
/ruaﬁ JAK+ )V + {V VT HIE (4.13)

The term in square brackets on the rhs of (4.12) has exaatlytitucture needed for employing
(3.12). Note the perfect balance of relative coefficientgined for this to happen! This becomes
possible within the PT-BFM framework thanks to the speadatices appearing in the SDE; instead,
in the conventional SD formulation (e.g., in tRg gauges) it would be very difficult to obtain the
precise combination of terms needed for implementing (3. Exidently, by virtue of (3.12) it is
clear thatl1(0) = 0. Thus, the part of the calculation determinifigq) is very similar to that of
scalar QED, in the sense that it leadgdtal seagull annihilationkeeping the gluon massless.

On the other hand, the terfis(q), not present in the scalar QED study, makes it possible to
haveA~1(0) # 0 for the gluons. Assuming, for simplicity, that the domihaantribution in (4.13)
comes fromv¢, we obtain

/m2 A(k+q)[(k+qg)2 k7. (4.14)

Now, in the limitg? — O (in Euclidean space) we have that

lim {q2/ A (k k+q)[(k+q)2_k2]} :_%/(Eszz(kz)[ﬁ?(k2)]’, (4.15)

-0

where the “prime” denotes differentiation with respeckfoNote that a monotonically decreasing
mass/[ii?(k?)]’ < 0, guarantees the positivity Gi%(0) (in Euclidean space)

An important consequence of this analysis is that Eq. (4cah)be split unambiguously into
two parts, one that vanishes @s— 0 and one that does not. In fact, using (4.3) on the Ihs of
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(4.11), we can assign the two types of contributions into sgparate (but coupled) equations,
namely (Minkowski space)

ig2Ca

*HH(q) = o - a1y @ (4.16)
~ igZCA
(@) = g gy (@ (4.17)

As we will see shortly, the first equation will determine thementum dependence of the effective
charge, and the second the running of the gluon mass.

5. Effective charge and gluon mass: coupled but unique

It is well-known that, due to the Abelian WIs of the PT-BFM @nés functions, the product

~

do(c?) = G8o(P) = G®A(P) = d(d?), (5.1)

forms a renormalization-group (RG)-invariant-{ndependent) quantity [1]. In order to realize
Eq.(5.1) non-perturbatively, first set

P (0?) = P (e?)H (), (5.2)
wherem?(¢?) is assumed to be the RG-invariant dynamical gluon mass. Then

N 2
AQP) = qz:—'(in?z()qz) ) (5.3)

and from the requirement thgﬁ(q) must be RG-invariant we have that
g*H () =7°(a). (5.4)
Therefore, we finally arrive at the RG-invariant combinatio
d(@?) = g°A() = FA(P)D(), (5.5)
with B 1
AQP) = =Tl (5.6)

So, (1T(q2) is written as the product of two RG-invariant quantitiese tiimensionless running
couplingg?(g?) and the dimensionful “massive” gluon propagatgc?).
We next cast our analysis in terms of the RG-invariant gtiestdefined above. The use of

the spectral representation [1, 17] #g?), namely

2
A(QR) = /om2 %, (5.7)
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Figure 4: Numerical solutions displaying the momentum-dependehteeceffective charge and the gluon
mass, for three different values of the renormalizatiomppi

results in a spectacular simplification, because it “sdlties combination{%} appearing
in (4.12). After a series of standard assumptions one firaddtgins [9]

1 1 | A 4 a7\Y% w24 4 47\Y/2
GZ(qZ):gz(uz)-l-b /0 dz<1+5—q22> (1—q—§> A(z)—/o dz<1+gzz> (1—u—§> A(z)]7
(5.8)
and oo 3 i
— q . © _
i — 5 @) [t ay) - 3 [aReFemt)|. 69

whereb = 10C, /4811%; the discrepancy from the factbr= 11C, /4877, namely the first coefficient
of the QCD one-loogB-function, is due to the (gauge-invariant!) omission of giest loops.

_ Tostudy the behavior of the solutions of (5.9) for asymptaity largeg?, setA(x) — 1/x and
A(y) — 1/y to arrive at

271 (o 1/
2 2__ < = - ~2 /
(@ — g | [ aynt) - 5 [ 5.10)
Itis relatively straightforward to establish that the apgatic solutions of (5.10) display power-law
running. Indeed, substituting on both sides of (5.18)%&?) of the form

4
m(f) = z—gaan)“, (5.11)
one recognizes that the second term on the rhs of (5.11) isalibg, and that (5.11) is a solution
of (5.10) provided thay = £.
We next solve numerically the two coupled integral equajaenormalizing them at three
different points, namely: = {4,10,91} GeV, with a(u?) = g?(u)/4m = {0.341,0.229,0.127},
respectively. In Fig. 4, we show the results &ofg?) andn?(g?); for either quantity we see clearly

10
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Figure 5: The RG-invariant produd(q?) obtained by combining the results fa¥g?) andm?(g?).

that the three curves merge practically into a single ones #tonfirming numerically theip-
independence, expected on formal grounds. The solutiores(fg) may be fitted by the physically
motivated functional form [1], namely

a (o) :

~ 4mbin(? +tng) /A7
with t = 3.7 and/ = 645MeV. The behavior of?(g?) in the entire range of momenta can be
accurately described by the following parametrization

mz(qz):qzmg {,n (q2+f<q2,m%>> /,n (f<o,;ng>>]3/ﬂ 5.1

+mg N2 A

where f(g?,mg) = plmé+p2ﬁ, with py = —1/2, p = 5/2, andmy = 612MeV. Finally, with

the help of Eq. (5.5) we can construatig?) out of the numerical solutions far(g?) andm?(q?); the
result is shown in Fig. 5. Obviously, sincég?) is built out of two quantities that are individually
independent oft, it too turns out to bgi-independent; this property is clearly observed in Fig. 5.

(5.12)

6. Conclusions

The analysis presented here demonstrates that the appearfsseagull divergences in gluon
mass generation is caused by a subtle mismatch between raleptield theoretic mechanisms.
Specifically, the Schwinger mechanism, which requires t{hygearance of massless poles in the
three-gluon vertex, distorts the mechanism responsibi¢hi® cancellation of the seagull diver-
gencesunlessthe poles enter into the gluon vertex in a very particular wayoncrete example
of a vertex that does not produce any clash between these gebanism has been given, and
the implications for the resulting SDE have been worked diite elimination of the seagull di-
vergences allows the resulting SDE equation to be sepaustohbiguously into two distinct dy-
namical equations, determining the gluon mass and the Q@atiee charge. This, in turn, is

11
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a significant improvement over the existing approaches revtiee infrared behavior of these two
guantities had to be extracted (not without a certain anityigérom dA(qZ). It is clear that the
methodology outlined here should be applied to gauges whenesults can be directly compared
to lattice simulations (such as the Landau gauge). Giverthieasolutions forx (g?) andm?(g?),
and therefore fodA(qz) and/orA(g?), are expected to be unique, one should be able to test if the
freezing value\(0) obtained within this new SDE treatment coincides with tiegtrson the lattice.
We hope to report progress in this direction in the near itur
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