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1. Introduction

During the ten years ranging from 1965 to 1974 was inventedstandard model of particle
physics. This was a major and often overlooked scientifineveuring the early sixties, the four
fundamental interactions where known, but the weak intenaevas only described by Fermi’s ef-
fective theory and the strong interaction seemed to be exéimer away from any sound theoretical
description, precisely because, being strong, it seempdsagible to control by expanding around
a small parameter, as had been the case for quantum elettiroahs.

Then came the miracle. A quantum field theory containing kpiand gauge particles named
gluons was proposed and its major property was isolatednptsyjic freedom. It was a miracle
because its formulation is extremely compact, with amyt 1 free parameters namingns the
number of quark flavors, i.en; = 6, the beautiful constraints of gauge symmetry, while thiel fie
of its applications is huge. Up to now no strong argument le@s I[presented which could allow to
deny QCD to be the theory of strong interactions. Of courseetlare drawbacks. The first is that
we are not able to extract very accurate predictions from @@E@mises.

But the most frustrating unsolved problem is the inexisteofca real proof of the confinement
property, i.e. of the observation that only hadrons aremeskein nature and never isolated quarks
or gluons. We are all convinced that confinement is a propr@CD. Confinement is an experi-
mental fact. Furthermore lattice-QCD (LQCD) calculatiowsich are based on QCD’s principles,
provide results in full agreement with confinement. But thisot a proof.

Confinement is the major issue of this meeting and we all &eltbat it has to be looked
for in the infrared behaviour of QCD. We will hear in this cergnce discussions around several
approaches to confinement. Our approach will not be to fotlowriticise some confinement sce-
narios, but rather to try to provide reliable answers to tirestjon: How do Green functions behave
in the deep infrared. In this talk we will, for the sake of siroijby, restrict ourselves to the quark-
less pure Yang-Mills theory. We assume that the main festaf€QCD’s infrared properties are
present in Yang-Mills, at odds with Gribov’s hypothesistttiee light quark supercritical binding
was the origin of confinement [1].

1.1 Tools to handle the Green functions in the deep infrared

There exist analytical tools which are mainly Ward-Slawiaylor identities (WSTI) and
Dyson-Schwinger equations (DSE). There exists a numenoaivhich is LQCD.

WSTI and DSE are exact. They can be derived rigorously fragrptith integral formulation
of QCD. However, WSTI's are a necessary a posteriori chetklbunot constrain so much while
DSE'’s are a very large set of coupled non linear integral gops Trying to solve the latter is a
formidable task and it is not clear how many solutions eXisiere can even be an infinity of them.

LQCD is exact, it is really an approximation of QCD, howewués ionly numerical, leading to
an intrinsic uncertainty, and, as we already mentionedaticairacy is poor.

We believe that it is extremely fruitful to combine both thealytical and numerical ap-
proaches. Indeed we will see an example in which LQCD allawddcide between two very
different classes of solutions of DSE’s. And next we will seeexample in which analytic meth-

n¢ 42 if we count the strong CP term.
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ods provide the functional form of the ghost propagator & deep infrared, thus allowing to
extrapolate to zero momentum, where no direct LQCD calicudas possible.

1.2 Notations and definitions

In latin languages the translation of “ghost" starts wittfleh while “gluons” starts with a “G"
in all languages we know. Therefore we use the following tharta: the bare gluon propagator is
written

G(p*,A\?)

G (p?,N?) = 7 Sab [q,v - p“pzp V} (1.1)

where G(p?,/A?) is the bare gluon dressing functioA, is the ultraviolet cut-off, inverse lattice

spacinga—? in the lattice case. The bare ghost propagator is written

F(p* )
p2

F22(p?,A?) Sab (1.2)

whereF (p?,A\?) is the bare ghost dressing function.
The corresponding renormalized quantities are labelletth®iR subscript:

Gr(p*, %) = lim Z3H(u? A) G(p%,A?)  Fr(P,?) = lim ZgH(u?, A) F(P2 A% (L.3)

where is the renormalisation scale.
An important remark for the following is that [2, 3]

FOOA) = Zs(H2A) <FR(0,u2) +0 <,\—12>>
G(O,A) = Za(u%N) <GR(O7“2) + ﬁ(%))
(1.4)

In the MOM renormalisation scheme, the renormalised qtiegtare set equal to their tree
value when the momentum is equal to the renormalisatiorescal

Gr(M?,p?) = FRr(p?,u?) =1 (1.5)
whence, using eq. (1.3)
Z3(U2 N2 =G(u%N?),  Zg(u?, N?) = F (U2 N2). (1.6)
The bare ghost-ghost-gluon vertex is parametrised by
F52(—a.ka—k) = igof*( avH1(a.K) + (a—K)vH2(a.K) ) | (L.7)

wherek (q) is the incoming (outgoing) ghost momentum. Taylor’s tleeor4] implies that the
ghost-ghost-gluon vertex becomes trivial when the incgnmmmentum vanishes
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This implies that if we take this kinematics to renormalise ¢host-ghost-gluon vertex, the vertex
renormalisation constantz = 1.
Exploiting this property we can define very simply “Taylocsupling constant" by [5]

22_9%(/\2)222 2 A2
whereg%(/\z) is the bare coupling constant. Notice that, wigéeF andG depend logarithmically
on the cut-offA, at only depends on it via inverse powed$1/A?).
Finally we assume, as everybody does, some simple powenl#dve ideep infrared:
G(p%A%) B (P F(p2AY) O ()% = ar(phA?) O (pP2Ftee (1.10)

2 0 2_.0 p2 0
2. Two classes of solutions to the ghost propagator DysonaBioger equation

Let us consider the ghost propagator Dyson-Schwinger mqu@EPDSE). It was claimed by
many authors trying to solve the DSE's that a general cormiusas that & + ag = 0 or, in other
words thatar (p?) — ct > 0 whenp? — 0. On the other hand many indications from lattice QCD
show a strong vanishing @it (p?), see a recent result at very small momenta in fig. 5 of [6].

Looking into details of the GPDSE we found that there wereaultwo classes of solutions [7]

e Solution I: ¢ + ag = 0, at(p?) 27, Ct>0andar <0, F(p?,A?) e ®

2 .0

e Solution ll:ar =0, F(p?,A?) 2, ct>0and, using the lattice evidence tiogg > 0, 201 +
ag > O, C{T(pz) —0

This is valid at fixed cut-off\. Similar conclusions hold for the renormalised quantiti®slution
| is often called the “scaling solution" while solution Il ¢zlled for some reason the “decoupling
solution”.

2.1 Schematic proof of the existence of the two solutions

The GPDSE writes in our notations as

1 d*q [ F(®,A)G((g—k,A)?) [(k-q)2
F(k%/\)lJrg%NC/(Zn()q“( (@ q;(q((—qk)‘l )){( kg) —qz} Hl(q,k,/\)) , (2.1)

Using Taylor’s theorem eq. (1.8), completed with indicaidrom perturbative QCD, we assume
that in eq. (2.1H; is regular: never vanishing nor infinite, and not too far frbmin practice we
will take it as a constant close to 1. This hypothesis is ratbaal. The r.h.s of eq. (2.1) is divergent
at fixedA since the integranGF decreases at largg asa 34 which is not enough to make the
integral convergent. Therefore we prefer to regularizey iising a subtracted GPDSE:

1 1 d*a (F()\ [ G((a—k?) [(k-g)?
Fie Fie = B G (g )( e [
G _k/2 Kk . 2
sl o)
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where we have assumet] to be a constant and omitted to write The r.h.s. now is convergent.
Let us assume that we rescale all momenta by a common facterO, we count the power be-
haviour of the I.h.s and the r.h.s. From eq. (1.10) the l.Blsabes like(A2)~% and the r.h.s as
(A2)%+ar  Matching both sides leads to solution b2+ ag = 0. Howeverthere is a loophole
in this argument whet/F (p?) — 1/F(0) > 0, i.e. whenag = 0 since then the |.h.s. vanishes to
leading order. To get a relation we need to go to the sublgdséhaviour of 1F (p?). We are then
in the case of solution llag = 0 and no constraint onog + ag. This is the proof. More details
can be found in [7].

2.2 Numerical resolution of the GPDSE

In order to understand better the relationship betweerettves classes of solutions we have
performed a numerical solution of the GPDSE [8]. Since wesiar only one DSE, we need
additional inputs. Our inputs are:

e The gluon propagator is taken from lattice QCD. It is extfaped to the large momenta
using perturbative QCD formulae and to zero momentum asgumfinite, non zero limit,
as strongly indicated by lattice QCD.

e The ghost-ghost gluon vertex is taken to be constant asiqaséibove from Taylor’s theorem.

e The coupling constant multiplies the vertex function whieh assume to be constant. This
product, a rescaled coupling constant, is taken as a freenster.

We then fit this parameter to recover a solution in agreeméhtthhe ghost propagator computed
by lattice QCD. This exercize can be performed, mutatis mita with bare quantities or renor-
malized ones. In the latter case we define the rescaled aguginstant by

& = NeGaZiH1r (2.3)

wherez; is the vertex renormalisation constant and our renorntaisacale is chosen to be 1.5
GeV.

Our result is thathere is one critical value of the rescaled coupling constif = 33.198 for
which the renormalised ghost dressing function divergegia momentum, solution | (“scaling"),
while for all smaller@?, F(0) is finite, solution Il (“decoupling"). Fitting to the valuesf F(k?)
from lattice data giveg? = 29. The plots are shown in fig. 1. Not surprisingly, the ploh2ws
that the producE2G, proportional to Taylor’s coupling constant, eq. (1.9)egdo a constant for
the critical@;2 and vanishes for any smallg#, fitting lattice data fog? = 29.

2.3 Expansion of the ghost propagator at small momentum

From the GPDSE one can derive the low momentum expansior @ liost dressing function
in the case of solution Il [8]. If we assume that the gluon piggtor goes to a finite constant, which
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Figure 1: Comparison between the lattice SU(3) datgBat 5.8 and with a volume 32for the ghost
dressing function and our continuum SD prediction renoisedlaty = 1.5 GeV forg? = 29. (solid line) ;
the agreement is striking ; also shown is the singular smutihich exists only afi> = 33.198.... (broken
line), and which is obviously excluded.

implies thatat (k?) O k?, it takes a simple form:

3z1H
Frll.p) = F(0.4%) (1+ T ar ()l0g()

F(K3,A) ~ F(O,A) <1+ %aT(kz) |og(k2)>
(2.4)

This formula, which can be refined [9], is very useful sincallibws an extrapolation of lat-
tice data down to zero momentum. Thisais exemple in which an analytic method supports the
numerical one

3. What do we learn from lattice QCD

This will be a very brief section as everything has been @wén Teresa Mendes’s talk.
Let us just mention recent publications, which presentltgsibtained with particularly large vol-
umes and thus small momenta. What follows concerns baren@ueetions at some finite cut-off.
Cucchieri-Mendes have studied t88(2) case [10]: their fig.2 shows a bending of the ghost dress-
ing function perfectly compatible with solution 1l (*decpling™). In [11] they consider th =0
situation and exhibit bounds on the gluon propagator (tfigir4). Bogolubsky et al. [6] consider
SU(3): their fig. 2 shows that the gluon propagator goes to a nonaarstant at zero momentum,
fig. 4 shows also a bending of the ghost dressing function andbfclearly shows a vanishing of
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Figure 2: Comparison between our lattice SU(3) dat@at 5.8 and with a volume 32for the product of
gluon times ghost square dressing functiGagk)Fr(k)?, renormalised att = 1.5 GeV, and the correspond-
ing curve for the continuum singular solutie + 2ar = 0, which exists only af? ~ 33.198, obviously
excluded. Also shown is our continuum regular solutiong®#= 29 (solid line) for which the agreement is
striking.

ar at zero momentum. The general conlusion is that the glugpggator goes to a non zero con-
stant, the ghost dressing function may go to a finite non Zemd, land Taylor's coupling constant
clearly vanishes at zero momentum. If the finiteness of tlesigtiressing function is today only
an indication, the vanishing of the coupling constant is peling, thus contradicting solution |
(“scaling™). Now, since the analytic GPDSE method says thette exists only these two classes
of solutions, we may conclude that nature has chosen splitiand thus that the ghost dressing
function must indeed go to a finite non zero constant at finiteoff. As we sedhis is an exemple
in which the LQCD numerical method allows to discriminatéwsen two classes of solutions of
the GPDSE

One remark is in order here. We use the denomination “cogmonstant” in a very general
sense: any well defined quantity which in the ultravioletagraptotically equivalent to, sagiys,
is eligible for the denomination “coupling constantty defined in eq. (1.9) is obviously one of
those [5]. Is this coupling constant convenient for phenootegical descriptions using tree level
diagrams in the infrared ? presumably no. If one aims at thémpmenology, as do the proponents
of the “pinch technique" [12, 13], one could easily redefinees eligible coupling constant by
pulling a massive gluon propagator out for the gluon leg aatmn of the ghost-ghost-gluon Green
function used to build the coupling [14]. Thagen(k?) = ar(k?)(k? +M?) /k?> whereM could be
the gluon mass

4. Can the bare ghost dressing function be finite non zero ?

This question was raised by Kondo’s remark [15, 16] of a r@tdbetween thé& = 0 values of
the ghost dressing functidf(k), Zwanziger's horizon functioh(k), Kugo’s functionu(k) [17, 18],

2We thank A.C. Aguilar, D. Binosi, J. Cornwall and J. Papailessfor this comment.
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and an additional functiom/(k). Applying to this relation Zwanziger’s horizon gap equatand
assuming that/(0) = 0 he derives the surprising result thié®) = —2/3 and F(0)=3, independently
of the cut-off. The questions we will raise are: is this rielatexact? does the prediction agree with
lattice ? Is it compatible with renormalisability of QCD ? Cpoint of view is detailed in [19].

4.1 Kondo’s relations

In this subsection we only consider bare quantities. Ongtisal to the problem of Gribov’s
ambiguity,which was proposed by Zwanziger [20], consistasing the Gribov-Zwanziger parti-
tion function,which aims at restricting the Gribov copies [21] within theilv Horizon:

z,= / [DA] & (AA) det(M) e S+ v/ d>xhix) (4.1)

for the D-dimensional Euclidean Yang-Mills theory, wh&g, stands for the Yang-Mills action,
M is the Faddeev-Popov operator,

M2 = — 9, D3P = ~ 3, (0,5 + g, (4.2)
andh(x) is Zwanziger’s horizon function,

() = [ dPy g% 00 (M) (x y)g 1 °AL(Y) (4.3

that restricts the integration over the gauge group to tee@ribov region, provided that the Gribov
parametery, is a positive number.

One defines then the functiar{k?) which, at vanishing momentum, gives the Kugo-Ojima
parameter, and the functian’k?) via the following identities.

{ (D";‘,bcb) (ngdeAﬂce) = — 85,8%u(k?) ;
(c? (gfdefAﬁéf)ﬁp' = 529k, (U(k?) + W(k?)) . (4.4)

From these definitions one obtains [15, 16] and jfhout any hypothesis about u and w

son - EQUZE_ 0 [0k
w(0,A) = —1—u(0,A) + F(é/\) =—F(O’A%+_(1D_2) + F(é/\) + D'il {é?ﬁk‘l")]
4.2 No finiteF(0,A) is possible at large cut-offA
If we use Zwanziger’s gap equation:
(h(x))y = (N*~1) D. (4.6)

the functionsu(0) andw(0) become, from eq. (4.5), a function of the b&€0) plotted in Fig. 3.
The current lattice solutions for the bare ghost dressimgtfans at vanishing momentum lie in-
side the green dotted squarEhe apparent approximate agreement of lattice results tithdo’s
solution is nevertheless misleading and due to the modetateff value on the lattices
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Figure 3: The solutions fou(0,A) andw(0,A) plotted as a function df (0,A) under the assumption that
the horizon gap equation is valid.
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r (] Kondo’s solution b
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5
FOON)

Figure 4: The same plot shown in fig.3 but 0, A) is required to be zero and the gap equation is relaxed by
a multiplicative facto (A), as explained in the texk (A) is plotted on the solid blue line. Again, current
lattice estimates lie inside the green dotted square.
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Indeed let us assume a fixed renormaliBg(D, u?). The plot in fig. 3 can then be understood,
as a function of thég(uz,A) at fixedu? as soon as inverse powers/obecome negligible in front
of logarithms, since, from eq. (1.3), eq. (1.4),

F(O,A) 1

Z3(U%,N) = WJrﬁ(—). 4.7)

The large cut-off dependance 2§ is known to be:

23([.12,/\) o <Iog(/\//\QCD)
23([.12,/\0) B IOg(AO//\QCD)

9/44
> 1+ O(a)) , (4.8)

Z3(U2,\) — o whenA — oo,

Then the infinite cut-off limit is the limit at infinity on thedmizontal axis of fig. 3. The
particular solution proposed in ref. [15, 16] (black cis)leobtained by imposingv(0,A) = O,
corresponds to the intersection wf- w and u. It cannot hold wherZs — «. Notice that the
hypothesis of a finite barg (0) with a vanishingFgr(0) does not hold either since thé{0,A\) =
Z3FR(0) + 0(1/N?) = 6(1/A?) and consequentlf (0,A) vanishes wher — oo

Notice also from fig. 3 that a finite/(0,\) is not possible at the large cut-off limit.

We should now take into account that gap equation (4.6) imsaguence of Gribov-Zwanziger
modification of the Yang-Mills action eq. (4.1). This is nobat is done in LQCD, although lattice
gauge fixing also restricts the Gribov copies within Grilsokbrizon. Therefore we believe that
condition eq. (4.6) has no reason to be fulfilled in LQCD and/meanot at all in QCD. Let us
definek (A\) such that

<h(0)>k_o:il(i_)rrg)viD/de (h()e** = k(A) (N2—1) D. 4.9)

If the gap equation eq. (4.6) is thus relaxed it becomes plesg keepw(0) finite, a result
derived in [22, 23] in the Landau background gauge. We sh@nstiution wherw(0) = 0 on
the fig. 4. Nothing changes concerning the fact that the tefiout-off limit is at infinity on the
horizontal axis. Our conclusion still remains valig: not possible to have a finite(B,A) in the
large A\ limit

5. Conclusion

In fig. 5 we perform an extrapolation of the lattice bare ghargtssing function using the
small momentum expansion [19] shortly explained in eq.)(@f4ection 2.3. The data for the two
larger lattice volumes are taken from ref. [6] and the otlfiens refs. [24, 8]. The fit with formula
eg. (2.4) is rather good in its range of validity (small mortoem). We also notice that the different
lattice results seem to agree rather well although theyespond to differenB values i.e. different
lattice spacings. One may feel happy and claim that we haw®d gcaling invarianceBut this is
a wrong statement from a misleading observation

Indeed, remember that the lattice spacing is the inversieeofwt-off in lattice regularisation.
From eq. (4.8) we know that when the lattice spacing goesrtm ¢& — ), F(0,A) 0 8%, On
the whole range of lattice spacings considered in fig. 5paltyh the cut-off varies by more that a

10
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Figure 5: Bare ghost dressing function estimated from differenidattlata sets. The solid line is for the
best fit with the small-momentum expansion wRf = 5.7(80%)) and the dashed one stands for the best fit
with R(3 =5.7, ).

factor of 3,8%4* varies only by 2.5%. This is why this variation is obscuredststistical errors
in fig. 5. This fake “scaling invariance" hides the truthtk?, A\) rises very slowly to infinity when
N—owie f3— oo,

Bare values depend dramatically, although slowly, on theoffuand have no real meaning
unless the cut-off is specified. What makes really sense asdmell defined limits at infinite
cut-off (vanishing lattice spacing) are renormalised dquas [2, 3]. If we choose 1.5 GeV as the
renormalisation scale, we get from lattice the gross eséima

F(1.5GeV)=Z3~16 whence Fr(0,1.5GeV) ~2.2. (5.1)

Altogether, combining all which has been discussed hemganclusion concerning the ghost
dressing function is

e The renormalised ghost dressing functi0, 12) has a finite limit at vanishing momentum,
Fr(0,(1.5GeV)?) ~ 2.2. Itis a positive decreasing function at small momentaabty also
decreasing for all momenta.

e The bare ghost dressing functiéi{k®,A) goes very slowly to infinity at infinite\ for all
momenta.

3Indeed there is a trend of the largest cut-gff= 6.4, to lie above the others, but this is hardly visible.

11
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