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Hamiltonian approach to Yang-Mills theory in Coulomb gauge

1. Introduction

The usual language of quantum field theory is the functional integral framework. However, from
ordinary quantum mechanics we know that for many non-perturbative studies the solution of the
Schrödinger equation is much simpler than calculating the corresponding functional integral. Al-
though in quantum field theory the regularisation and renormalisation procedures are much better
understood in the functional integral formalism, for non-perturbative investigations like the infrared
sector of Yang-Mills theory, the canonically quantised operator formalism seems to have certain
advantages over more traditional field theoretical approaches if it comes to the computation of
physical observables. In recent years there have been many activities in studying the infrared sec-
tor of QCD in Coulomb gauge. The use of the Coulomb gauge is advantageous since this gauge is a
so-called “physical gauge”: The gauge degrees of freedom can be directly removed and Gauss’ law
can be explicitly resolved. For example, the confining potential between static colour sources can
be extracted much more easily than e.g. in Landau gauge. In this talk I report on results obtained
in recent years by our group by a variational solution of the Yang-Mills Schrödinger equation in
Coulomb gauge. The plan of my talk is as follows:
After these introductory remarks I will briefly review the basic ingredients of the Hamiltonian
approach to Yang-Mills theory in Coulomb gauge. In Sect. 3 I will present some results obtained
from a variational solution of the Yang-Mills Schrödinger equation in Coulomb gauge and compare
them with recent lattice data. There I will give a physical interpretation of the ghost form factor in
Coulomb gauge. Our variational ansatz for the Yang-Mills wave functional will be checked in Sect.
4 by means of the functional renormalisation group flow equations, which will be solved assuming
ghost dominance. In Sect. 5 and 6 I will present some applications of our approach. Thereby I
will focus on the calculation of the topological susceptibility and of the Wilson loop by means of a
recently proposed Dyson equation.

2. Hamiltonian approach to Yang-Mills theory in Coulomb gauge

Standard canonical quantisation of Yang-Mills theory in Weyl gaugeA0 = 0 leads to the Hamilto-
nian

H =
1
2

∫

(

Π2 +B2) , (2.1)

whereΠ = δ/iδA is the momentum operator andBa
i the non-Abelian magnetic field. Due to the

Weyl gauge Gauss’ law escapes from the equation of motion andhas to be implemented as a
constraint on the wave functional

D̂Π|ψ〉 = ρ |ψ〉 . (2.2)

HereD̂ = ∂ +gÂ, Âab = f acbAc is the covariant derivative in the adjoint representation of the gauge
group andρ denotes the colour charge of the matter fields. Implementingthe Coulomb gauge∂A=

0 Gauss’ law (2.2) can be explicitly resolved resulting in the Coulomb gauge fixed Hamiltonian

H =
1
2

∫

(

J−1Π⊥JΠ⊥ +B2
)

+
g2

2

∫

J−1(

ρ + ρdyn
)

JF(ρ + ρdyn) , (2.3)
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whereΠ⊥ denotes the transversal momentum operator,J = Det(−D̂∂ ) is the Faddeev-Popov de-
terminant andρa

dyn = −Âab
k Πb⊥

k is the colour charge of the gauge field. Furthermore

Fab(x,y) = 〈a,x|(−D̂∂ )−1(−∂ 2)(−D̂∂ )−1|b,y〉 (2.4)

is the so-called Coulomb kernel. Its vacuum expectation value〈F〉 defines the non-Abelian Coulomb
potential. In the gauge fixed theory the matrix elements of anoperatorO[A,Π] between states of
the Yang-Mills Hilbert space are defined by

〈ψ1|O[A,Π]|ψ2〉 =
∫

DA⊥J[A⊥]ψ∗
1 [A]O[A,Π]ψ2[A] , (2.5)

where the restriction to the integration over the transversal gauge fields and the Faddeev-Popov
determinant in the integration measure arise from the implementation of the Coulomb gauge.
In Ref. [1] a variational solution of the Yang-Mills Schrödinger equation has been accomplished
using the following ansatz for the vacuum wave functional1

ψ [A] = J[A]−1/2exp

[

−
1
2

∫

AωA

]

, (2.6)

whereω(x,y) is a variational kernel, which is determined by minimising the energy

〈H〉 =
〈ψ |H|ψ〉

〈ψ |ψ〉
. (2.7)

For the wave functional (2.6) the static gluon propagator isgiven by

〈AA〉 = (2ω)−1 (2.8)

implying thatω represents the gluon energy. In Ref. [1] the energy〈H〉 was calculated up to two
loops. Furthermore the gap equationδ 〈H〉/δω = 0 was converted into a set of Dyson-Schwinger
equations.

3. Results

An infrared analysis, Ref. [5], of the Dyson-Schwinger equations shows that the infrared exponents
of the gluon and ghost propagators defined by

ω(k) ∼ k−α , d(k) = k2〈(−D̂∂ )−1〉 ∼ k−β (3.1)

satisfy the sum rule
α = 2β −1 (3.2)

and allow for two solutions

i) β ≃ 0.796(0.85) ii) β = 1.0(0.99) (3.3)

1In Refs. [2], [3] a pure Gaussian ansatz was used. Furthermore, in Ref. [2] the Faddeev-Popov determinant was
completely ignored, while in Ref. [3] it was included in the kinetic part of the Yang-Mills Hamiltonian only. For a more
general discussion of the ansätze for the vacuum wave functional, see Ref. [4]

3



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
3
8

Hamiltonian approach to Yang-Mills theory in Coulomb gauge

 1

 10

 100

 1000

 10000

 0.001 0.01  0.1  1  10  100 1000

k [σc
1/2]

d(k)

 1

 10

 100

 1000

 0.001 0.01  0.1  1  10  100 1000

k [σc
1/2]

ω(k)/σc
1/2

Figure 1: Ghost form factor (left panel) and gluon energyω(k) (right panel).

which were also produced by the numerical solutions obtained in Refs. [1] and [6], respectively.
The corresponding numerically obtained infrared exponents are given in the brackets. In the nu-
merical solution the horizon condition

d−1(k = 0) = 0 (3.4)

was explicitly built in.2 Figures 1 and 2 show the ghost form factor and gluon energy as functions
of the momentum for the solutionii). At large distances the gluon energy rises linearly with the
momentum as expected from asymptotic freedom, while it is infrared divergent at small momenta.
Solutionii) gives rise to a strictly linearly rising static colour potential shown in fig. 2. The running
coupling constant extracted from the ghost-gluon vertex obtained for the solutionii) is shown in
fig. 3 (left). It is the solutionii) shown in figs. 1 and 2, which is also supported by the lattice
data obtained in Ref. [8]. Remarkably, the lattice gluon energy can be perfectly fitted by Gribov’s
formula

ω(k) =

√

k2+
M2

k4 (3.5)

with the energy scaleM ≈ 0.8 GeV. The lattice calculations carried out in Ref. [8] differ from
previous lattice calculations in two respects: the residual gauge invariance left after implementing
the Coulomb gauge has been explicitly fixed and the scaling violations have been eliminated giving
rise to a strictly multiplicatively renormalisable staticgluon propagator. For more details we refer
to Ref. [8].
In Ref. [9] it was shown that the inverse of the Coulomb gauge ghost form factord−1(k) can be
interpreted as the dielectric function of the Yang-Mills vacuum

ε(k) = d−1(k) , (3.6)

which is shown in fig. 3 (right). By the horizon condition (3.4) the dielectric constant vanishes in
the infraredε(k = 0) = 0, implying that the Yang-Mills vacuum is a perfect dia-electric medium,
in which by Gauss’ law∇(εE) = ρ free colour charges cannot exist and thus have to be confined
in colourless states. This is precisely the picture underlying theMIT bag model, which assumes
thatε = 0 in the vacuum whileε = 1 inside the hadronic bags. The magnetic analogue of a perfect

2In D = 3+1 there are also so-called subcritical solutions [7], satisfying d−1(0) 6= 0.
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Figure 2: Static gluon propagator1/(2ω(k)) compared to the lattice results (left panel) and static quark
potential (right panel).
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Figure 3: Running coupling constant (left panel) and dielectric function of the Yang-Mills vacuum (right
panel).

dia-electric medium is a superconductor for which the magnetic permeabilityµ defined byB= µH
vanishes (B-magnetic field,H-induction). In the usual notion of duality, meaning the interchange
between electric and magnetic fields and charges, a medium with ε = 0 is a dual superconductor.
Therefore, the Gribov-Zwanziger confinement scenario assuming d−1(k = 0) = 0 implies by the
identity (3.6) the dual Meissner effect in the infrared.

4. Functional renormalisation group flows

Our ansatz for the Yang-Mills vacuum wave functional can be tested by comparison with results
from functional renormalisation group flows (FRG). The basic idea of the hamiltonian FRG is to
add an infrared cut-off term quadratically in the quantum field φ

∆Sk[φ ] =
1
2

∫

d3pφ(p)Rk(p)φ(−p) (4.1)

to the Euclidean action, which cuts off momentum modes of thefield φ with momentap < k, but
leaves the theory unchanged for momentap> k. At large cut-off scalesk→ ΛUV the theory is well
under control due to asymptotic freedom and perturbation theory can be applied. In turn, fork→ 0
one recovers the full theory. The flow of the theory with the cut-off scalek is described by the
renormalisation group flow equation for the infrared regularised effective actionΓk[φ ]. For cut-off

5
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Figure 4: FRG-flows for the propagators.

Figure 5: FRG-flows for the propagators assuming ghost dominance and dropping the tadpoles.

terms (4.1) the flow equation reads

∂tΓk[φ ] =
1
2

Tr

[

(

Γ(2)
k [φ ]+Rk

)−1
∂tRk

]

, ∂t ≡ k
∂
∂k

(4.2)

whereΓ(2)
k [φ ]+Rk is the inverse propagator ofφ with

Γ(2)
k [φ ] =

δ 2Γk[φ ]

δφδφ
(4.3)

The flow equation (4.2) entails the evolution of the IR-regularised effective action fromk → ∞
whereΓk[φ ] coincides with the bare actionS[φ ] to k→ 0 whereΓk[φ ] is the full effective action.
Here we only are interested in the flow of the propagators, which is obtained from (4.2) by taking
the second functional derivative with respect to the fields

∂tΓ
(2)
k =

δ 2

δφ δφ
1
2

Tr

[

(

Γ(2)
k [φ ]+Rk

)−1
∂tRk

]∣

∣

∣

∣

φ=0
. (4.4)

This equation is diagrammatically illustrated in fig. 4 for the propagators of Yang-Mills theory
and is structurally similar to a Dyson-Schwinger equation except that the infrared regulator∂tRk

enters the loops and all vertices and propagators are fully dressed. For the Hamiltonian flow of
Yang-Mills theory in Coulomb gauge the fields involved are the transversal gauge field and the
ghost field. Thus the right-hand side of the flow equation (4.4) receives contributions from ghost
and gluon loops. We assume ghost dominance and keep only the contributions from the ghost loop
to the right-hand side of the flow equation (4.4). The resulting flow equations for the gluon and
ghost propagators are diagrammatically illustrated in fig.5. With our choice of the vacuum wave
functional the action is given by

6
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Figure 6: FRG-flow of the ghost form factord(p) (left panel). Topological susceptibility obtained in the
variational approach from solutionii) (3.3) as function ofσc/σ (right panel). The two horizontal lines limit
the range of the lattice results.

S[A,c, c̄] =
∫

Aω A+
∫

c̄(−D̂∂ )c . (4.5)

We solve the FRG flows shown in fig. 5 for the gluon energyω(p) and the ghost form factord(p)

using the following regulators

gluon:Rk(p) ≃ p exp

(

k2

p2 −
p2

k2

)

, ghost:Rk(p) ≃ p2 exp

(

k2

p2 −
p2

k2

)

, (4.6)

where we have suppressed the tensor structure, and perturbative initial conditions at large cut-off
scalek = Λ

ωΛ(p) = p+const, dΛ(p) = const (4.7)

down to some minimal momentum cut-off scalekmin. Fig. 6 illustrates the renormalisation group
flow of the ghost form factor. As the cut-off scalek is reduced the ghost form factor as function
of the momentump gets infrared enhanced and eventually becomes infrared divergent as the cut-
off scalek becomes very small, i.e. the horizon condition emerges whenthe infrared cut-off is
removed. This is nicely seen in fig. 7 where the ghost form factor is shown at the minimum cut-off
kmin as a function of the momentump. It is also seen that the infrared exponent, i.e. the slope
of the curvedkmin(p), does not change as the minimal cut-off scale is lowered. Fig. 8 shows the
corresponding result of the integration of the flow equationfor the gluon energyωkmin(p). The
infrared exponents of the gluon energy and the ghost form factor satisfy the sum rule (3.2) found
from the Dyson-Schwinger equation of the variational approach. It can be shown that the FRG
results coincide analytically with those of the variational approach either for optimised regulators
[10], or if the ghost tadpoles are included. From analogous studies in the Landau gauge [11] we
expect that for general regulators the infrared exponents are smaller. Indeed this is the case for the
approximation illustrated in fig. 5 and with the regulators (4.6). This can be seen from figs. 7 and
8. The gaps between the solutions in figs. 7 and 8 and the difference in the exponents gives an
estimate for the systematic error of the present approximation. A detailed analysis will be provided
elsewhere.

7
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Figure 7: Ghost form factordk(p) (left panel). For sake of comparison the result of the variational approach
is also shown (right panel).

1e-08 1e-06 0.0001 0.01 1 100
p [GeV]

1

10

100 k
min

 ~ 10
-6

k
min

 ~ 10
-5

k
min

 ~ 10
-4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

p [units DSE]

0.1

1

10

100

1000

ω from FRG
ω from DSE

Figure 8: Gluon energyωk(p) obtained from the solution of the RG-flow equation (left panel). For sake of
comparison the result of the variational approach is also shown (right panel).

5. Physical applications

An important quantity for hadron physics is the topologicalsusceptibilityχ defined by

χ =

∫

d4x〈0|q(x)q(0)|0〉 , q(x) =
g2

8π2 E(x)B(x) , (5.1)

whereq(x) is the topological charge density. It reflects the anomalousU(1) symmetry breaking in
QCD and can be extracted from theη ′ mass through the Witten-Veneziano formula

m2
η ′ +m2

η −2m2
K =

6
F2

π
χ , Fπ = 93 MeV. (5.2)

This quantity vanishes to all orders in perturbation theoryand is therefore perfectly suited to test
non-perturbative methods.χ is a manifestation of theθ−vacuum and can be easily evaluated in
the Hamiltonian approach. Adding the topological termLtop = θ

∫

d4x q(x) to the Yang-Mills

Lagrangian shifts the momentum byΠ → Π−θ g2

8π2 B and the Hamiltonian of theθ−vacuum reads

Hθ =
1
2

∫

[

(

Π−θ
g2

8π2 B

)2

+B2

]

, (5.3)

from which one derives the following expression for the topological susceptibility (V is the spatial
volume)

8
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Figure 9: Graphical illustration to (a) the Dyson series for the Wilson loop and (b) the Dyson equation (6.1).

Vχ =
d2〈Hθ 〉

dθ2

∣

∣

∣

∣

θ=0
. (5.4)

Using the Yang-Mills wave functional obtained from the variational principle for the solutionii)
(3.3) and restricting the intermediate states in eq. (5.4) to 3-gluon states (on top of the vacuum) one
finds [12] the results shown in fig. 6 (right panel), whereχ is plotted as function of the ratioσc/σ .
σc is the Coulomb string tension, which is extracted from the static colour potential and used to fix
the scale in the variational calculations whileσ is the Wilsonian string tension extracted from the
Wilson loop. Lattice calculations indicate that this ratiois in the range ofσc/σ = 1.5. For such
ratios the value obtained forχ is somewhat larger than the quenched lattice results.
A crucial test for a wave functional would be the calculationof the Wilson loop, the order parame-
ter of the Yang-Mills theory. The spatial Wilson loop can in principle be directly calculated in the
Hamiltonian approach, once the vacuum wave functional is known. However, the practical calcu-
lation is rendered difficult by the path ordering. A quantitymore easily accessible is the ’t Hooft
loop, the disorder parameter of Yang-Mills theory. In Ref. [13] the ’t Hooft loop was calculated
using the wave functional corresponding to the solutionii) (3.3) and a perimeter law was found,
which is characteristic of the confinement phase. For further details we refer the reader to Ref.
[13].

6. Wilson loop from a Dyson equation

Although the temporal Wilson loop is dual to the spatial t’Hooft loop and a perimeter law in the
latter implies an area law in the former, one would appreciate an explicit calculation of the Wilson
loop and observe the emergence of the area law. Recently, a Dyson equation has been proposed
in the context of supersymmetric Yang-Mills theory, which,at least in an approximate fashion,
takes care of the path ordering [14]. It has been applied to the temporal Wilson loop in non-
supersymmetric Yang-Mills theory [15].
This Dyson equation applies to trapezoidal loopsW (S,T;L) and basically sums up the ladder

9
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(b)(a)

Figure 10: (a) Processes involved and (b) processes ignored in the Dyson equation (6.1).

diagrams shown in fig. 9(a), i.e. the gluon exchange between one pair of opposite paths. This
Dyson equation is diagrammatically shown in fig. 9(b) and is analytically given by

W(S,T;L) = 1+g2C2

S
∫

0

ds

T
∫

0

dtD
(

(x(s)−s(t))2
)

W(s, t;L) . (6.1)

This equation suffers from the following limitations [16]:

1. Since we include only one pair of paths (see fig. 10(a)) the Dyson equation (6.1) is restricted
to strongly asymmetric loops. However, it is irrelevant whether the loop is a temporal or
spatial one.

2. When one of the two parallel temporal lines is set to zero, the trapezoidal loop degenerates
to a triangle-shaped loop. In this case the Dyson equation (6.1) yields for the Wilson loop

W (S,T = 0;L) = 1 (6.2)

which, in general, is certainly incorrect. This wrong boundary condition is not surprising,
since settingT = 0 orS= 0 contradicts the assumptionS,T ≫ L in the Dyson equation (6.1).

3. The equation is bounded to produce strict Casimir scaling, which is known to occur only in
the intermediate distance regime.

4. The Wilson loop is a gauge-invariant object. However, theright-hand side of the Dyson
equation (6.1) depends via the gluon propagator on the gauge. In fact, the gluon propagator
can be defined only in a gauge-fixed theory and vanishes if the gauge is unfixed.

5. Finally, the Wilson loop is renormalisation group invariant, while the right-hand side of the
Dyson equation (6.1) is not, except for the temporal Wilson loops in Coulomb gauge (which
we will consider at first).

In Coulomb gauge the temporal gluon propagator has the form

g2Dab
00(x,y) = −δ abVC(|x−y|)δ (x0−y0)+Pab(x,y) (6.3)

whereVC(|x− y|) is the so-called non-Abelian Coulomb potential. At small distances it has the
ordinary Coulombic∼ 1/r behaviour, while it rises linearly at large distances∼ σcr, with σc

10
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Figure 11: Left panel: The Wilsonian potentialV(L) obtained from the static gluon propagator (3.5) and
the perturbative potentialVpert(L). Right panel: The full potential minus its perturbative part.

being the Coulomb string tension, which is larger than the Wilsonian string tensionσ . The non-
instantaneous partP(x,y) is assumed to lowerσc towardsσ . If we ignore the screening partP(x,y),
the gluon propagator is instantaneous and the Dyson equation (6.1) applies only to rectangular
loopsW (T;L) ≡W (S= T,T;L)

W(T;L) = 1−C2VC(L)

T
∫

0

dtW(t;L) . (6.4)

This equation contains the correct boundary conditionW (T = 0;L) = 1 and can be solved analyti-
cally, yielding

W(T;L) = exp(−C2VC(L)T) . (6.5)

Within the approximation used for the gluon propagator, we have correctly obtained an area law.
It is clear why in this case the equation produces the correctresult: The processes neglected in the
Dyson equation (6.1) (see fig. (10(b)) do not exist for an instantaneous gluon propagator.
For arbitrary (non-instantaneous) gluon propagators, theDyson equation (6.1) can be converted
into a one-dimensional Schrödinger equation

[

−
d2

dr2 +U(r)

]

ϕn(r) = −
Ω2

n

4
ϕn(r) (6.6)

with the variabler = S−T
L and the Schrödinger potential given by

U(r) = −g2C2L2 D
(

L2(1+ r2)
)

. (6.7)

The Wilsonian potential can be obtained from the "ground state energy"

V (L) = − lim
T→∞

1
T

lnW (T,T;L) = −
Ω0(L)

L
+const. (6.8)

Applying the Dyson equation to the spatial Wilson loop in Coulomb gauge and using the static
transversal gluon propagator (3.5) augmented by its anomalous dimension (derived in Ref. [17])

11
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to make the gluon propagator well-defined in coordinate space, one finds the Wilsonian potential
shown in fig. 11(a). When one subtracts from this potential the perturbative one, a linearly rising
potential is left, implying an area law for the spatial Wilson loop, see fig. 11(b).
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