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1. Introduction

Much work has been devoted in the last years to the study of@® running coupling
constant determined from lattice simulations, as wellsrpgrturbative regime [1-9] as in the deep
infrared domain [10]. Only very recently [9,11], the Greshinction approach to study the running
coupling and then to estimafg;s has been pursued by exploiting a non-perturbative defindfo
the coupling derived from the ghost-gluon vertex. The vafgsared domain for the running of the
coupling so defined has been discussed in the Olivier Peal&’s ¥We aim to deal here with the
running behaviour of this ghost-gluon coupling beyond Relbmain, above roughly 2-3 Gev.

We will show that the analysis ajuenchedattice simulations leads to a non-perturbative
determination of the running coupling in terms of two-paghiost and gluon Green functions and
to obtain/\yg in pure Yang-Mills Nt = 0). Furthermore, a very realistic estimate/gfs, directly
comparable with experimental determinations, will bec@némmediate possibility thanks to the
many unquenched configurations which are presently availab

A precise determination of the non-perturbative coupliogrfthe lattice also reveals a dimension-
two non-zero gluon condensate in the landau gauge [10]. ®@edsthen to describe the running
with a formula including non-perturbative power correndo be confronted with lattice estimates
of the coupling. This procedure constitutes an optimal weflor the identification of\;s and of
the gluon condensate [11]. Much work has been also done ¢stigate its phenomenological im-
plications in the gauge-invariant world [12]. In particyleve will discuss the interpretation of this
condensate in terms of the Yang-Mills semiclassical fielckgeound by applying the Instanton
liquid model.

2. The ghost-gluon coupling

There is a large number of possibilities to define the QCD maatized coupling constant,
depending on the observable used to measure it and on themaimation scheme. Actually, any
observable which behaves, from the perturbative point@ivyvasg provides a suitable definition
for it. Among such quantities stand the 3-gluon and the gbhsin vertices, which have been
widely used by the lattice community to get a direct knowked§as from simulations. Of course
an important criterion to choose among those definitionsb&ihow easy it is to connect it to other
commonly used definitions, specially tMS one, and to extract from it fundamental parameters
like /\QCD-

A convenient class of renormalization schemes to work withhe lattice is made of the so-
called MOM schemes which are defined through the requirement that a gaedar coefficient
function of the Green’s function under consideration takeree-level value in a specific kinemat-
ical situation given up to an overall “renormalization &alTo make the point clearer we recall 2
schemes which we have used in previous worksgn

e The symmetric 3-gluon scheme in which one uses the 3-gludBX/&,,,(pP1, P2, P3) With
pi=pi=p;=H°

e The asymmetric 3-gluon schemm) in which the 3-gluon vertex ,,,(p1, P2, P3) is
used withp? = p3 = p2, p3 =0
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In the present note we shall apply a spedfi©OM-type renormalization scheme defined by
fixing the (ghost and gluon) propagators and the ghost-glaostex at the renormalization point.
Let us start by writing the ghost and gluon propagators indaangauge as follows,

(62" () = SN gy (5, - Pa)
FPN)
p?

(F<2>)a” (P2A) = — 3 (2.1)

A being some regularisation parametar’(3) if, for instance, we specialise to lattice regularisa-
tion). The renormalized dressing functiof&; andFg are defined through :

Gr(P?,1?) = limp_wZ3 (12 A) G(P?,A)
FR(pZaHZ) = Ilm/\—>°°z (“2 /\) F(p2>/\) 5 (22)

with renormalization condition

Gr(U?, p?) = Fr(p®,u?) =1. (2.3)

Now, we will consider the ghost-gluon vertex which could loa+perturbatively obtained through
a three-point Green function, defined by two ghost and onenglields, with amputated legs after
dividing by two ghost and one gluon propagators. This vecaxbe written quite generally as:

g-k
ra(—q,k;q—k) = . > O > P = igo F2*¢(auHa(a,K) + (a— K)vH2(a.K)) , (2.4)

whereq is the outgoing ghost momentum akithe incoming one, and renormalized according to:
Tr=2il. (2.5)

The vertex,, involves two independent scalar functions. In the MOM remalization procedure
Z1 is fully determined by demanding that one specific combimatif those two form factors (cho-
sen at one’s will) be equal to its tree-level value for a sjiekinematical configuration. We choose
to apply MOM prescription for the scalar functidiy + H, that multipliesq, in eq. (2.4) and the
renormalization condition reatls

(HI(@,K) + H3(@, k)| oy = lim Zu(p? A) (Ha(@ ki A) +Ha(@ K A)) [ poye =1, (26)

where we prescribe a kinematics for the subtraction poicit $hat the outgoing ghost momentum
is evaluated at the renormalization scale, while the inognine, k, depends on the choice of
several possible configurations; for instand&:= (q— k)? = u? (symmetric configuration) or
k=0, (q—k)? = u? (asymmetric-ghost configuration).

1In the case of zero-momentum gluon, an appropriate choictdm®Z, (u2)H1 (g, q) = 1. This would make

the renormalized vertex equal to its tree-level value at¢émermalization scale.

|q2:u2
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On the other hand, the fields involved in the non-perturkatiefinition of the vertex , in
eq. (2.4) can be directly renormalized by their renorméizaconstantsZz andZs, and the same
MOM prescription applied to the scalar combinatidp+ H; also implies:

OR(H?) = lim Zs(u? N)Z5* (12, A go(A?) (Hl(q, ki) + Ha(q, k:/\)>

P=p?
Z;-/Z(HZ’/\Z)Z:g(IJZ’/\Z)

Zy(u2,N?) '
We combine both eq. (2.6) and the first-line equation of (Ba#eplaceH, + H, and obtain the
second line that shows the well-known relationship= (Zs%/ 223)‘121, whereggr = Zg‘lgo.

We turn now to the specifimOM-type renormalization scheme defined bygeso incoming
ghost momentum Since those kinematics are the ones (and the only ones)iahwhylor's well
known non-renormalization theorem (cf. ref [13]) is vali@ whall refer to this scheme as to the
T-scheme and the corresponding quantities will bebrsaibscript. Then, in eq (2.4), we deto 0
and get

= lim go(A%) (2.7)

rabe(—q,0;q) = igo F2*°(H1(g, 0) + H2(q,0)) qy - (2.8)

Now, Taylor’s theorem states thielg (g,0;A) + H2(q,0;A) is equal to 1 in full QCD for any value
of g. Therefore, the renormalization condition eq. (2.6) iraaﬁl(uz) =1 and then

2012 2072
or () . 95(A) 2 A2\E2(,,2 A2) -

ar (1?)

where we also apply the renormalization condition for theppgators, egs. (2.2,2.3), to replace
the renormalization constantg; andZs, by the bare dressing functions. The remarkable feature
of eq. (2.9) is that it involves onlff andG so that no measure of the ghost-gluon vertex is needed
for the determination of the coupling constant.

Equation (2.9) has extensively been advocated and studiatieolattice (see for instance
reference [14]). However it must be stressed thatTtkecheme is thenly one in whichZ; =
1. Nevertheless the form (2.9) is used quite often in thi® ¢ésr a kinematical configuration
other than T-scheme’s) also as an approximation, spedraltglation with the study of Dyson-
Schwinger equations. An important remark is also in ordee:him the very infrared domain, for
phenomenological purposes (see for instance [15]), thplicmucan be more properly defined by
pulling a massive gluon propagator out from the ghost-gl@oeen function used to build it [16].

2.1 Pure perturbation theory

A standard four-loop formula describing the running for Thacheme coupling,

2 2 Py
aru?) = %(1—%'°gt<‘)+%é<<|og<t>—§> @))

: B 1(BY’ B2Bo
+ W <%+§ <E> <—2|093(t)+5|092(t)+ <4_6—f> |0g(t) —l))

2
ith t=In—. 2.10
wi n N2 ( )
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is obtained by inverting th@-function of ar,

dot oT\i+2

Br(an) = Gz = ~4m 3 B (%) (2.11)

where, as explained in [11], the coeﬁicielﬁscan be computed in terms @, those for the3-
function of the coupling renormalizad accordiNgs-schemeg, and of the anomalous dimensions
for gluon and ghost propagators,

1 dar(p?) _ o d g
ar(p2) da  Bys@) (2 ,{T],OW'nF(uz,/\)Jr/l\anlenG(uz,/\))
_ 2@+ y@
- Bws(@ (2.12)

Both anomalous dimensions need to be renormalized along Me@btriptionsi(e., Gr(u?, 4?) =
Fr(u?, u?) = 1) but expanded in terms @. The coefficients so obtained (the details and results
of the computation can be found in [11]) appear to agree witise directly obtained in ref. [17]
by the three-loop perturbative substracion of the ghastigigluon vertex in the QCD Lagrangian
with the appropriate kinematical configuratioh-§cheme).

2.2 OPE power corrections

In order to extend the description of the running coupling/aldo energies as low as possible
(of the order of 3 GeV) and to take full advantage of the latiiiata we want to compare with,
in order to reduce the systematic uncertainties, it is m@mgdo take into account the gauge-
dependent dimension-two OPE power corrections (cf. [Q818]) toar.

The leading power contribution to the ghost propagator,

(F@)0(eR) = [ d%e™(T (S(0)) ) 2.19
can be computed using the operator product expansion [IEJ(as is done in ref. [20],
T(C0)) = 3 ()™ 00); (2.14)

hereQ; is a local operator, regular when— 0, and the Wilson coefficierg; contains the short-
distance singularity. Eq. (2.14) involves a full hierarafyterms, ordered according to their mass-
dimension, among which only and :A3AY : contribute to eq. (2.13) in Landau gaugep to the
order 1/g*. Then, using eq. (2.14) into eq. (2.13), we obtain:

(F@)2(e?) = (co)™(?) + ()5 () {: AZ(0)AL(0) ) + ..

= (RE() + w40

m + ... (2.15)

2The operators with an odd number of fields= 1,3/2; dyAandd,,T) cannot satisfy colour and Lorentz invariance
and do not contribute a non-zero non-perturbative expeataalue, andtc does not contribute either because of the
particular tensorial structure of the ghost-gluon vertex.
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where

fd4Xéq'x <At-lfl(0) T (Ca@) Ai/(o»connected
GO% GoY,

Wab = (C )abar 5Stgor = 3 5Stgar

and the SVZ factorisation [21] is invoked to compute the Wfhlsoefficients. Thus, one should
compute the Sunsét diagram of the last line of eq. (2.16), that binds the ghasippgator to the
gluon condensate (where the blue bubble means contrattingaior and lorentz indices of the
incoming legs with 125d51) to obtain the leading non-perturbative contribution (ofise, the
first Wilson coefficient gives trivially the perturbativeqmagator).

Finally, after the renormalization of th&’-condensate at the subtraction paift= u?, ac-
cording to the MOM scheme definition, the ghost dressingtfands written as:

3 gR<A2>R“2> 2.17)

F 2 ,,2 - F 2 ,,2 1+ >
r(0%, 1) Rpert(d°, L) ( + @ 4NE-1)

where the multiplicative correction to the purely pertUNmaFg pert is determined up to corrections
of the order ¥q* or Ing/u. As far as we do not deal with the anomalous dimension ofAthe
operator, factorising this purely perturbative ghost sireg function in eq. (2.17) is a matter of
choice. However, the Wilson coefficient is also computedhati¢ading logarithm in ref. [11] and
eg. (2.17) appears then to be a very good approximation upsotder.

We can handle in the same way (see refs. [7, 8]) the OPE powerction to the gluon propa-
gator,

(AP)R 2
(Gg))it\)/(q27u2) = Rpert)uv q H ) (V@%)Ruz W—ul) + o (2-18)
and obtain
Wiy = m&w‘ + 2 um
3% /(@) \ab
= F (Gper - (2.19)

Then, after renormalization and appropriate projectiow gets for the gluon dressing function:

3 GR(AY)R 2
Gr(q?, %) = Grpen(dF, %) <1+@4FZNC27_R’1“) . (2.20)
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Finally, putting together the defining relation eq. (2.93 éime results egs. (2.17,2.20) we get

2
ar (1) = lim LE2(42 NG, A)

af*"(aB)

2
= lim =2F?(g8,A)G(d5,\) F3(u?,05) Gr(u?, a5)

N—oo 4TT
9 67 (G5) (AR
t 2\ 2 2 2 2 2 -

= a7 (G5) P& perl( M, G5) Gropert( U2, 00) <1+ K2 aNZ-1) =), @21

af(u?)

whereq% > Nqcp is some perturbative scale and the running of the pertwbatart of the evo-
lution, aP®", is of course described by the eq. (2.10) in the previous@eciAgain, the Wilson
coefficient at leading logarithm for the T-scheme MOM rumnooupling is obtained in [11] and
found not to induce a significant effect, provided that theptimg multiplying A? inside the bracket
is taken to be renormalized also in T-scheme. Thus, eq. \8&kribes pretty well the running of

at roughly above 3 Gev.

g
4

3. Data Analysis by the ‘platead method

In the following, as done in [11], we will apply gtateali-procedure exploiting eq. (2.21) to
get a reliable estimate of thfegcp-parameter from lattice data. The goal being to get a trushyo
estimate of the'\y;s-parameter, one could attempt to do it by inverting the pbétive formula
ed. (2.10) and using in thevertedformula the lattice estimates of the running coupling otediby
means of eq. (2.9) for as many lattice momenta as possibkn, Bme should look for glateau of
Nys in terms of momenta in the high-energy perturbative regithis (vas done with the coupling
defined by the three-gluon vertex in [4,5]). In the next sabea, fig. 1.(a) shows the estimates of
Nys so calculated for the lattice data presented in ref. [20022} 9<p? < 33 Ge\2.

However, in order to take advantage of the largest possilmmenta window one can use
instead eq. (2.21). In this way we shall hopefully be ablexiemd towarddow momenta the
region over which to look for the best possible values of theiy condensate and dfys 3. In
other words, one requires the best-fit to a constant of

(6.%) = (PRA(@)) . with:  aj = O’La“('giz) ; 3.1)

1+

where/(a) is obtained by inverting the perturbative four-loop foramuéq. (2.10), and results
from the best-fit (it appeared written in terms of the gluonaensate in eq. (2.21) ). Thus(a)

reaches aplateal (if it does) behaving in terms of the momentum as a constaaitwe will take
as our estimate okys. Of course, this is nothing but a fitting strategy for a 2-pagters (\y;s and
(A?)) fit of the estimates of eq. (2.9) from lattice data.

3This increases the statistics and reduces errors. It asidsasome possible systematic deviation appearing when
lattice momentum components, in lattice units, appraath (Brillouin’s region border).
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3.1 Results for pure Yang-Mills (Ns = 0)

The quenched lattice data that we will exploit now were presefor the first time in ref. [22].
We refer to this work for all the details concerning the ttimplementation: algorithms, action,
Faddeev-Popov operator inversion, etc. The parametefseofvhole set of simulations are de-
scribed in table 1

B | Volume || a= (GeV) | Number of confs.
60| 16 1.96 1000
60| 24 1.96 500
62| 24 2.75 500
64| 32 3.66 250

Table 1: Run parameters of the exploited data.

In fig. 1.(a), we show the estimates &f;s obtained when interpreting the lattice coupling
computed by eq. (2.9) for any momentum<®? <33 Ge\? in terms of theinverted four-loop
perturbative formula for the coupling, eq. (2.10). Therasties systematically decrease as the
squared momentum increases until around 22 Gallove this value, only a noisy pattern results.
In fig. 1.(b), the same is plotted but inverting instead the-perturbative formula including power
corrections, eq. (2.21). The value of the gluon condensasehleen determined by requiring a
“platead to exist (as explained in the previous section) over thaltatomenta window.

10 15 20 25 30

. } 0:22 Lﬂﬁ?%%l%? H%% { h? ﬁ ﬁ} I
AR
|
(a) (b)

Figure 1: (a) Plot of Ayzg (in GeV) computed by the inversion of the four-loop pertinEaformula as a
function of the square of the momentum (in G@Muhe coupling is estimated from the lattice data through
the perturbative formula obtained in the text. (b) Same as(gl) except for applying the non-perturbative
formula obtained in the text for the coupling and lookingtfte gluon condensate generating the best plateau
over 9< p? < 33 Ge\2.

One should realize that the non-perturbative analysis sderindicate that the perturbative
regime is far from being achieved pt=5 GeV. This is also illustrated by figure 2.a in which,
adopting forAys the value 224 MeV which results from the non-perturbativalysis, we plot
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F2G[11] | Asym. 3-g[8]| Sym. 3-g[8]| F/G[20] | [2]
Agzs (MeV) 224'8 260(18) 233(28) | 270(30) | 238(19)
VA, (Gev) | 1.64(17) 2.3(6) 1.9(3) 1.3(4) -

Table 2: Comparison of the estimate d¥ys obtained from the analysis of the ghost-gluon vertex (first
column) and others from literature. The renormalizatiompis y = 10 GeV.

against the square of the renormalization momentum theliogugonstant as computed by means
of the non-perturbative formula (2.21) (red curve) and ef perturbative one (2.10) (blue curve).
Displayed are also the lattice data. the values oty obtained from eq. (2.9).

Average

310—— : : —

300~ —
2801 —
2701~ —

260~ —

Ays (MeV)

2501~ —

e et e
2301 % E -

2201~

210~ —

so0l L
5

Figure 2: (a) Plot of at in terms of the square of the renormalization momentum: #eesolid line is
computed with the non-perturbative formula wit;s = 224 MeV, the blue one with the perturbative one
for the samé\y;g and the data are obtained from the lattice data set-up thesdn the text. (b) Comparison
with previous published estimatesAys in pure Yang-Mills; the blue triangle stands for the estieriatthis
work and the red square for tla@erageof the five estimates presented in the plot.

Thus, one can conclude that our best-fit parameters incatipgronly* statistical errors are:

Nf=0 _ 8
Nys | = 224" MeV
g% (A%)R = 51797 GeV? . (3.2)
These values are in very good agreement with the previoumass from quenched lattice simu-
lations of the three-gluon Green function [7, 8] or, in theeaf/\ys, from the implementation of

the Schrodinger functional method [2], although sligh#lyger than the one obtained by the ratio
of ghost and gluon dressing functions [20] (see fig. 2.(b)tabd?2).

4. About the nature and the size of the gluon condensate

The nature of the dimension-two gluon condensate, as wéh @ossible phenomenological
implications, have been discussed in many works in the &stykears (see for instance [12, 18]).

4The error analysis is deeply discussed in [11].
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In particular, we presented some indications supportimgidlea that the low-momentum gluon
correlation functions could be nicely described in termthefsemiclassical instanton background
for the gauge field [23], and used an instanton liquid pictorestimate the size for this gluon

condensate in Yang-Mills [10]. Indeed, the gauge field in itireganton picture and within the

sum-ansatz approach, can be written in the singular Landagegas

XV —2 X—27
oA, = ZZRa“nW(| _zi|"2)(p<| o |> ) (4.1)
whereg = (6/B)%/? is the bare gauge coupling in terms of the lattice paranf&tef is known as

't Hooft symbol andR2“ represents the color rotations embedding the canonica?)Sbktanton
solution in the SU(3) gauge groupg,=1,---,3 (@=1,---,8) being an SU(2) (SU(3)) color index.
The sum is extended over all the instantons and anti-irmtarive should then replace the 't Hooft
symbol1 by n) in the classical background of the gauge configuratig(x) is the instanton profile
function. If we consider the profile of the BPST solution farisolated instanton, we get

2 '+NA — 122p%n: 4.2)

N
P A= '+ A /d“ ZgAa gAY = 12rPp2 LA
whereN; (Na) stands for the total number of instantons (anti-instasito@®n the other hand, if we
neglect instanton position and color correlations, ed.)(#ads for than-gluon Green function to

42 /2
M) = (gha) <P

where [s) = ?/Om zdz3(s2 ¢(2) , (4.3)

for m= 2,3; n being the instanton density. It depends on the functidfigh) of the general
instanton profileg(x), and< --- > means the average over instanton sizes with a given noedalis
instanton radius distributiory(p). Then, two interesting limits appear where some results not
depending on the instanton profile can be obtained:

e For a sharp radius distribution, the particular combimatid two and three-gluon Green
functions defining the three-gluon running coupling in {Bf.gives [24]

6
a3g(K%) = k—n = ' (4.4)

e Forkp > 1, asl(s) asymptotically behaves as /s’ in the larges limit, one obtains

m/2
GM (K?) ~ n% (%) k2—4m (4.5)

Thus, eq. (4.5) provides us with large-momentum limits far two and three-gluon Green func-
tions behaviour which do not depend on the radius distdbutior on the instanton profile. How-
ever, the large-momentum lattice correlation functiompgalominated by the short-distance quan-
tum fluctuations, whether such a behaviour occurs can be dgtlycted after performing some

10
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“cooling” procedure [25] to kill the higher energy modes.igts done in [23] and, as can be seen
in fig. 3.a, the expecteki 6 (k1) power behaviour clearly emerges for the two-gluon (ttgken)
Green function after “cooling”. This is a good indicatiorr the success of the instanton picture
in describing the gluon correlation functions. Howeverttas “cooling” has been proved to alter
the configuration (instanton sizes become distorted, nb@taand anti-instanton anhiliate to each
other...), the power-law given by eq. (4.4), which is thaugtbe followed by the “uncooled” gluon
correlators in the low-momentum regime, offers a more Ipiidinstanton detector”. In ref. [24],
ed. (4.4) is shown to work for a three-gluon coupling comgutem several lattice simulations
(see fig. 3.b taken from [24]) and the instanton density isneged to ben ~ 5 fm—4.

1

*5.624
05716 T
n5724
0.8 || 45732
©5816
>5.824

E3 . : 45924 o
10ke x6.024
¥ = = 0.6 /1
:: 100~ LN 4 +6.032
= =
L T
T om
= - e 4

= 04 -

‘:;;i‘r% 02 |
,::;g - g 1~

= [} ———

0 0.25 05 0.75
k (GeV)

(@) (b)

Asym

01

Figure 3: (a) two and three-gluon Green functions after cooling: tle&ach their expected power-law when
the number of cooling sweeps increases. (b) The three-glaapling defined in the text: it follows the
expected low-momentukf power-law withn = 5.27(4) fm 4,

Then, this estimate of the instanton density and the aversianton radiusp ~ 0.4 fm
(measured, for instance, in [23] and being close to the phenological predictiony~ 1/3 fm),
can be applied to eq. (4.2) to givg?(A?) ~ 4Ge\~. There is of course no exact recipe to compare
this estimate with the OPE one, since the separation betéeesemiclassical non perturbative
domain and the perturbative one cannot be eXaldibwever, both lie prettily on the same ballpark.

5. Conclusion

We have demonstrated that, in the particillascheme, the coupling defined from the ghost-
gluon vertex is obtained by only dealing with two-point Qrdanctions. Some interesting non-
perturbative information can be furthermore distillednfréhe running analysis of this coupling
beyond the deep IR: thAgcp parameter (usually expressed in #&-scheme), computed here
for pure Yang-Mills from Landau gauge lattice simulatioasd a gauge-dependent dimension-two
gluon condensate. The latter is interpreted and sized loking an instanton liquid picture, which
successfully describes the low-momentum gluon correlatio

50ne may appeal to the fact that at the renormalisation paitthe radiative corrections are minimised; therefore
a semiclassical estimate must best correspor(@&gqq_u at some reasonabje, which one could guess to be a typical
scale of the problem as/ or some gluon mass.

11
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