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1. Introduction

A beautiful picture of the quark deconfinement phase transition of finite destyre Yang-
Mills theory has emerged in the context of AAS/CFT duality [1]. The gravitatidimal of this
phenomenon is the collapse of hot Anti-de Sitter space to an anti-de Sittea&child black
hole. Unlike asymptotically flat space, where a thermodynamic state is unstablactohole
collapse no matter what the temperature, at sufficiently low temperaturesieaSttter space is
thought to be stable. It contains a hot gas of gravitons and possibly jpéinécles. Moreover,
when it is heated to a certain critical temperature, the hot gas eventuallygoedegravitational
collapse to a spacetime which is an anti-de Sitter black hole. The temperatueatamply of the
resulting spacetime are then identified with the Hawking temperature and Beekehlawking
entropy of the black hole. The phase transition between the two phases ardier and is called
the Hawking-Page transition [2]. It is thought to be the gravity dual of #tedfinement transition
of finite temperature Yang-Mills theory.

In the strict sense, deconfinement in AAS/CFT refers to the phenomendgh in4 super-
symmetric Yang-Mills theory quantized on a spatial three-spt#teAdS/CFT duality identifies
this theory with 11B superstring theory on a backgroukdS; x S® spacetime. The latter reduces
to type IIB supergravity on an asymptoticalydS x S° spacetime only when the string coupling
constant, which governs the breaking and joining of strings is small and iw @hergy limit,
where energies are small compared to the curvature of the backgrouting. gauge theory, these
limits correspond to the largs 't Hooft limit, N — o with A = g2,,N held fixed, wheregyy is
the Yang-Mills coupling constant, and then a subsequent large 't Hoofilimg,A — oo limit. By
studying the Hawking page phase transition, one is studying deconfinenthetstrong coupling
limit of the gauge theory. The lard¢limit is important here since, due to the finite spatial volume,
a phase transition can only occur whiis infinite. However one expects that the phase transition
would persist if one relaxes the largelimit. On the string side of the duality, very little can be
done away from the largk supergravity limit. The only other region where analytic computation
is possible is in the weak coupling, smallimit. That limit has recently been examined and found
to have a largéN phase transition which is identified as deconfinement [3]-[4]. It is cdnjed
that the two limits are connected by a line of deconfining phase transitions wstnétbhes across
the intermediatd regime.

In this Article, we shall review some of our recent work on the propertigha@behavior of
some particular Polyakov loop expectation values in deconfined phasegdtige theory [5]. This
work was motivated by an observation in string theory concerning thégwal of the Polyakov
loops that we will discuss [6]. We will elaborate on this motivation in later Sestion

2. Confinement-deconfinement and the Polyakov loop
Let us begin by reviewing the role of the Polyakov loop operator as agr qrarameter for
confinement in an adjoint gauge field theory [7]-[8]. The Polyakov Joop

— [ =3 TrFZ,+...

<Tr92eifdeAo(T>>’<)>:“dA“'“]e o :
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Trope # dtho(t)

(2.1)
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measures the trace of the holonomy of the gauge group on the Euclidean titaelaipure Yang-
Mills theory, or a theory such ag” = 4 super Yang-Mills theory where all matter fields transform
in the adjoint representation of the gauge group, the Euclidean path irtegra center symmetry.
It arises from gauge transformations which, in such a theory needenpetiodic in Euclidean
time, they need only preserve the periodicity of the local fields. As suchcdreobey a boundary
condition

9(1+B,%X) = cg(T,X)
wherec wherec = €¥/N is the generator of th&y center of theSU(N) gauge group. Because
c commutes with everything, all local operators which transform in the adjepresentation, for
exampleF,y (1,%) — 9(1,%)Fu (1,%)g"(1,%), remain periodic after the gauge transform. However,
the Polyakov loop transforms as

Trope 5 4Tt ¢ Trgpg lo drAo(1) (2.2)

The center transformation appears as a global symmetry of the Euclidgeumiggral and it acts
on Polyakov loops. When it is a good symmetry, any combination of Polyalapslavith non-
vanishing center-charge must have vanishing expectation value. Thierigrigted as confinement.
When the center symmetry is spontaneously broken, the expectation valbe c@n-zero. This
is interpreted as deconfinement. The representation of center symmelrgdrassed to study the
deconfining phase transition of Yang-Mills theory [9]-[12].

The expectation value of the Polyakov loop operator is related to the fezgyeof Yang-Mills
theory with a classical color source inserted. If one quantizes Yang-tidtsry with the constraint
that a non-dynamical color charge is located at prjiihe free energy of the systdmis obtained
from the Euclidean path integral in (2.1).

o BT _ <Tr @é.fﬁdr%<r,2>> (2.3)

I is the energy that is needed to insert the external charge. When thetaiqrevalue is zero, as
in the confining phase, the energy is infinite. When the expectation value-izearo, the energy is
finite.

3. Effective field theory

In recent work, the weak coupling limit of both Yang-Mills theory amd = 4 super Yang-
Mills theory have been studied for the case where the space-tigexsS! [3]-[4]. This is an
interesting case in that, at weak coupling, the spectrum of the vector gklds f§ completely
gapped. If they are conformally coupled to the curvature ofShethe scalar fields of#” = 4
theory are also gapped, as are the fermionic quarks. Then, in the redjiere the temperature is
much less than the gap,= % << 1 (we choose th&® to have unit radius), an effective field theory
technique can be used to find an effective action for the Polyakov lodipof Ahe propagating
degrees of freedom can be integrated out, leaving an effective fiaddytler the Polyakov loop
operator itself. The expectation value of the (appropriately renormalleeg)operator can then
be computed using this effective field theory which is a unitary one-matrix mode

- —Serf[U]
<Tr d jfder(r,x)> _J %E gSEﬁ[I]fU (3.1)
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where, at one-loop order, the effective action is

(<] n|2
SlU] =~ 3 [206) + (D2 () o 32)
n=1
where , ,
B 6X+ 12¢° — X 16x2
X=e R,ZB(X)ZW,ZF(X):W (3.3)

Here, we have presented the action fét = 4 Yang-Mills theory. The one for pure Yang-Mills
theory is similar and is presented in Ref. [& in (3.2) does not depend on the 't Hooft coupling
A. This is due to the fact that it is the one-loop approximation. Dependendestarts at two
loops. For pure Yang-Mills theory, it has been partially found up to onderdoops [13] where the
first order nature of the phase transition is confirmed.

The effective actiorg:« inherits symmetries from its parent theory:

e Gauge invariance,
Ser[U] = Ser[VUV ] (3.4)

Note that the effective action (3.2) depends only on invariant quantitie®. Tr

e Center symmetry
Set[U] = Set[cU] (3.5)

Note that in (3.2), the effective action dependd.bonly in the center symmetric combina-
tions TU"TrU™.

e Further, the action is of ordé?, Sug[U = 1] ~ N2.

Gauge invariance (3.4) allows one to diagonalize the unitary matrices to farodel of the
eigenvalues. It turns out that this model can be solved by a saddlerpeihbd in the larg®l limit
and it is found that it has a phase transition. The expectation value of thakbwe loop vanishes
in the low temperature phase and it is nonzero in the high temperature plésés ifiterpreted as
a deconfinement transition which occurs even at weak coupling. Foffdutiee action (3.2), the
phase transition occurs & ~ 0.38 which is marginal to the regime << 1. We will assume that
it is within the range of validity of the effective field theory technique. In tokofving we will
explore the deconfined phase. We will assume that we are at tempejfasirabove the critical
one and we will assume that the effective matrix model gives an accuistgmten of the physics
there.

The analysis of unitary matrix models and the existence of a phase transitiom type that
we are discussing here has a long history dating back to the seminal w@rksg and Witten [14].

4. Higher representations

The unitary matrix model can be used to calculate the expectation value ofljrak&oloop
operator in any irreducible representatRf the SU(N) gauge group,

[[du)eSlYITrr U

[[dU]eSerlV] 41

(TrrU (X)) =

4
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where Tk U is called the character. We shall show in the following that (4.1) can havestiteg
behavior which depends on the size and nature of the representatiortydes of representation
are easy to analyze: the completely symmetric representatiQqnghose Young tableaux are a
single row withk boxes and completely antisymmetric representatighisvhose Young tableaux
are a single column witk boxes. We shall consider large valueskafo that the ratidf—, remains
finite asN — o and we will study the behavior of these representatiorﬁ Bovaried.

Note that we have not normalized the Polyakov loop, as one would normally dividing by
a factor of the dimension of the representation. Our reason for not doiiggo be able to compare
our results directly with holographic duality where the appropriate opeisithe un-normalized
one. Thisimmediately introduces the interesting possibility that the expectatianisddigger than
one — for example if the averaging owdrwere concentrated at the unit matrix — the expectation
value would simply be equal to the dimension of the representation. Therigrgyewould be
negative, indicating that the system would “attract” the heavy quark. Tiparant attraction is not
dynamical, it is statistical, simply due to the increase in entropy from the multiplicityatés of
the quark.

The center charge of a representation is equal to the number of boxes Youhg Tableau
corresponding to that representation, modwldrhus, both representatioré and.<% have center
chargek modN. The expectation value (4.1) is therefore expected to vanish in the copfirase
when this charge is non-zero. On the other hand, the expectation valusecaon-zero in the
deconfined phase.

If the matrixU = diage®, ..., ™| were diagonal, the permutation symmetry can be used to
order the eigenvalues in a completely symmetric or completely antisymmetric refaise so
that they occur in order of non-decreasing index:

TryU = Z g d% | Tr, U = > PP &P (4.2)
y<a<..<a

ar<ap<...<ay

It is convenient to obtain these expressions from generating functions

1
(0
Tr,U = fzmm |‘| —gm o Tl 7{2 T |‘| (1+te®) 4.3)

where the contour integral projects onto the term in a Taylor expansioreahtegrand which

containsk eigenvalues. The contour in the integral oveancircles the origin. It can be moved

away from the origin if it does not cross singularities of the integrand. énctise of the anti-

symmetric representation (4.3) whisris finite, the integrand is a polynomial and the contour can

be moved anywhere. For the symmetric representation (4.3) it should rermtlaiim tive unit circle.
These can be written as the covariant expressions for the free exjergie

1 1 1 1
Bros = N In (Try U) = N In ﬁj{dt@@xp[—Trln(l—tU)D, (4.49)
1 1 1 1
Bro = —In (TrU) = — = ﬁfdttm@xpmln(utmp (4.5)

The characters in (4.4) and (4.5) have center chlied therefore they must vanish in the center
symmetric confining phase. They can be non-zero in the deconfined.phas
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In the largeN limit, the quantities in (4.4) and (4.5) can be computed using two saddle point
approximations. The first occurs while integrating over unitary matrices.ir).(ecause of the
gauge symmetry, this is an eigenvalue model. The gauge symmetry can be disegbtwalizeJ .
AtlargeN, the eigenvalues become classical variables and their distribution is fgunohimizing
S plus a Jacobian from the unitary integral measure. As lorkg<sN?, the loop operators in
(4.4) do not modify the eigenvalue distribution in the leading order at |&rgdt is given by a
densityp(@) which is% times the number of eigenvalues betweesnd@+ dg and is normalized,

[ dep(@) = 1. In the largeN limit the expectation values in Eq. (4.4) are computed using the
eigenvalue density,

Bl s = 1 In —fdt exp< N/ dop(@)In(1—te?) — klnt> (4.6)

Bl = 1 n o fdt exp( / dgp(@)In(1+te?) — kInt) (4.7)

The second use of a saddle-point approximation is to evaluate the integralio (4.6) and (4.7).
Let f satisfy the saddle-point equation

k fei‘P k
The functionsRyk/ﬂk(t) in (4.8) are related to the resolvent of the matrix model and are holomor-

phic functions ot with cut singularities on the unit circle determined by the suppogt(gf). Once
the solutiort of the saddle point is determined, the free energy is given by

Bl = /quop((p)ln(l—fé"’)jt:\(llnf. (4.9)

BT o = —/]:quop(qo)ln(1+fé“’) +£Inf. (4.10)

The generating function technique that we have used in the above is welhkisee Ref. [15] for
a recent application in a different context.

The reader might have the concern that the presence of the loop vanidbéepath integral,
though it does not alter the eigenvalue distribution to the leading ditiet will have an effect at
order /N and a ¥N correction in the ordeN? part of the action would contribute a term of order
N which competes with the free energy which we are computing. To see why tlosasproblem,
consider the free energy in the lafydimit is given by

NBr = inf [NZS[p}JrA/p—A +N/p|n(1—tei“’)+klnt} ~inf {NZS[p]—H\/p—)(\} |
11

whereSp] is the effective action consisting 8 plus a contribution from the integration measure.
The saddle-point equations are

oS 1 do
- _ (P —
5p+ In(1-té + /p /pl i Nt (4.12)

1we will argue that using the leading orde? densityp (@) in (4.6) is sufficient to obtaiBl 5, /4 to leading order
N accuracy.
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for the first infimum and

(‘;;’+I\A|2:o, /p:1 (4.13)
for the second infimum. The eigenvalue density which satisfies (4.13). iSThen the density
which satisfies (4.12) differs from it by a correction of orcﬁa,r Po + %ﬁl. However, sincgdg
satisfies (4.13), it is easy to see, that if we are interest&{3ih only to accuracy of ordeN, we
can get simply usgg in the equation which determinéand, to the same accuracy (where we trust
the ordeN but not the ordeNC contribution), in the expression fotBI" in (4.11). This justifies our
use of the “probe approximation” where we use the eigenvalue distributidve @ffective unitary
matrix model to compute the generating functions in (4.6) to (4.10). We note #atilar probe
approximation is made when analyzing the dual objects on the string theorgfdite AAS/CFT
correspondence.

Before we proceed further, let us consider a simple example, the confimese. Center
symmetry is an invariance under a simultaneous translation of all eigenvaluesg, + 277/N.
In the center-symmetric confined phase, the distribution is translation intjagigenvalues are
uniformly distributed on the unit circle and

1

= 4.14
Pconf 2T ( )

In the de-confined phase, on the other hand, the eigenvalues woeld han-constant distribution.
Let us put off discussing the de-confined phase until later.

With the confining eigenvalue distribution (4.14) we can integrate gverthe saddle-point
equations (4.8),

o [0 i<l Kk ~ O [fI<1 Kk

Similarly, and consistent with this, we can integrate the free energies in @dq%al0),

Kinf t| < 1 Kint  t|<1
Fy=1. N . Fo=14 NV
Al {IIT—I— (1+& Mt t|>1 BT {('Ig—l)lnt t| > 1

In the case of the symmetric representation, the saddle-point equatiol lfada solution
only when% = 0. We interpret the absence of a solution W|'—,fp¢ 0 as meaning that the expecta-
tion value vanishes. Certainly, if there is no saddle-point of a periodictimmof a variablep, the
integration is not dominated by any particular valuepadind @ must be integrated over its entire
range. This would average the expectation value of any operator witzeroncenter charge to
zero. ltis in the other case, when there is a saddle point, where theNdimé forces one to eval-
uate the integrand at the saddle point and the expectation value is genaraaihero. Further,
we see that the free energy has an imaginary part ithenl which indicates an instability. This
apparent pathology is consistent with the observation after (4.3) thattéygation contour should
remain inside the unit circle. We shall henceforth ignore the regjion.

(4.16)

2We do later consider the analytic continuation of the free energy and théosoddi the saddle point equation from
the region|t| < 1 to the entire complex plane.
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Similarly, for the anti-symmetric representation, the saddle-point equatids) (fa% a solution
only when either% =0 or% = 1, the two cases where the antisymmetric representation is center
neutral. This is also interpreted as confinement, the expectation value esimsall other cases.
Note that it has an expectéd— N — k duality, though it comes from interchanging two saddle
points, one with/f| < 1 and one with/f| > 1. Neither of these saddle-points alone exhibit this
duality.

We will review the computation of the higher representation Polyakov loopsmaite com-
plicated eigenvalue distributions. Before that, in the next Section, we paueeiew some of the
motivation for considering them. This motivation derives from the analyd@rgé representation
Wilson loops and the string theory dual objects in zero temperature derednfi = 4 Yang-Mills
theory.

5. Giant Wilson loops

In the duality between gauge field theory and string theory, the expectatioa of the Wilson
loop is normally thought to correspond to an open fundamental string ampiitugigng theory.
This has been made precise for the Maldacena-Wilson loop [16] whidrsliifom the Polyakov
loop (4.1) in that it contains the scalar field of th€ = 4 theory as well as the gauge field,

Wi [C] = Tr e (00! (0)+/ (9" 5(0) (5.1)

wherexH (1) parametrizes a closed cur@e @' (x), | = 1,...,6 are the scalar quark fields of = 4
super Yang-Mills theory ané' is a (not necessarily-independent) unit 6-vector.

In that case, the boundary of the fundamental string worldsheet is tboatthe loop contour
C placed at the asymptotic boundaryAdS;. The Maldacena-Wilson loop could be made to link
periodic Euclidean time in the finite temperature field theory. Then its string trdhalywould
be a disc amplitude where the boundary of the disc is located at infinity. Whstiech a disc
exists depends on whether the time circle is contractable. It is not conteataiine hot AdS
background, and it is contractable on the black hole background. Tigwinted out by Witten
as further evidence for the identification of the Hawking-Page transitiondetonfinement [1].

If C wraps the time circlé/y [C] carries center charge and, like the Polyakov loop, its expec-
tation value is governed by the realization of the center symmetry. Its expectaliee is related
to the holonomy of a heaw¥/-boson which would be created by HiggsiBY(N + 1) gauge sym-
metry toSU(N) x U (1) and wheref' gives the orientation of the scalar condensate. One could
imagine larger representation objects made fiAbosons, for example a bound state of a large
number of thaV-bosons which transforms in a higher representation of the gauge.group

In the zero temperature Yang-Mills theory defined on a spRfighn interesting phenomenon
occurs for loops in representations where the number of bloxeshe Young tableau is large so
that% is finite in the largeN limit. The dual fundamental string worldsheet is replaced by a D-brane
with world-volume electric flux [17].

This was found by studying highly supersymmet%icBPS loops, where some results are
known for all values of the coupling constant [18]. For the anti-symmegprasentation, the
dual is a D5-brane whose world volume is a direct producA®d® C AdS; andS* ¢ . For a
symmetric representation, it is a D3-brane with world voluktés x S € AdS.
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It is interesting to ask whether these D-branes exist in the finite temperaoneedry where
they would be dual to a gauge theory loop linking periodic Euclidean time. Tigstippn was stud-
ied by Hartnoll and Kumar [6] who searched for solutions of the appaitgBorn-Infeld actions
on the black hole background.

For the D5-brane wrapped &1 ¢ S which corresponds to a totally antisymmetric represen-
tation on the gauge theory side, there seem to be solutions fq% arith the usual cutoff ak = N
dictated by the maximum size of an antisymmetric representation on the gauge shEpand a
maximum radius for embeddir§f in S on the supergravity side. However, in the case of the D3-
brane, which should correspond to a totally symmetric representation,diantrd Kumar could
not find any solutions at all. This fundamental difference between the asmscs what motivated
our work on the gauge theory which is summarized in Ref. [5] and whichrevesaiewing here.

We emphasize that in supergravity we are studying the dual of the Maladdson loop
whereas in gauge theory our analysis is limited to the Polyakov loop. Bothoasgrged by the
center symmetry and both can become non-zero at the deconfinemeitioinarig high tempera-
ture, due to decoupling of the scalar fields, they should become similar.

6. Giant Polyakov loop

Let us begin with the symmetric representatiofi. We shall consider three examples of
eigenvalue distributions. First, the confining phasemas = ln Ry (t) vanishes ift| < 1 and is
—1if |t| > 1. This is the expected discontinuity at the unit circle. Eq. (4.8) has solutidgsvhen
£ =0, consistent with confinement.

As a second example consigefg) = 5 (1+2pcosg). p= (TrU) = [dep(@)€? is the
fundamental representation loop. Positivity of the density requirespO< % This distribution
depends omp and therefore is deconfined. While it is not realistic fér = 4 Yang-Mills theory, it
does occur in the strong-coupling phase of la¥g2-dimensional lattice Yang-Mills theory [14].

There is one solution AR, (f) = £ in the region|f] < 1 atf = &/p. (If £ andp are such that
t] > 1, bothRy, andr 4 should be extended there by analytic continuation.) The free energy is

k., [k/N
Ny = — |n _ 61
a=yn 23] 61)
wheree= 2.718.... T 4 has the interesting feature that, ﬁsis increased, it changes sign from
negative to positive. This results in a phase transition which occurs ﬁherﬁ%)cm =ep When

% < (%)Cm, I % is negative and the loop expectation valge)", is exponentially large. When
&> (§) i T4 Is positive and the loop vanishes fiir— co. This phase transition implies that,
even in the deconfined phase, sufficiently large symmetric representat®ssl|l confined.

As a check of the saddle-point approximation tottietegral in this simple example, observe
that, if for the moment we assume thaandN are finite, we can integrate (4.6) explicitly to get
e N = E—!kp". Using the Stirling formula and takinig~ N — o reproduces (6.1).

To see this behavior in another example, consider the semi-circle distributich Mor || <

2arcsin/2—2p, is
~ cos§ | L
p(e) = 2 2p) 2—2p—sm2§ (6.2)
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Figure 1: The free energy 4 (6) as a function of,% in the semi-circle distribution witlp = 0.51.

and which vanishes in the gap 2arcgid— 2p < |¢| < . We still use the fundamental loop, as a
parameter and no@g p < 1. Thisis the distribution in the weak coupling phase of 2-dimensional
lattice Yang-Mills theory [14]. Itis also an approximation to the deconfinedlidigion for weakly
coupled.#” = 4 Yang-Mills theory [4][19]. For sufficiently weak coupling, it could becarate
near the phase transition whepe= % The saddle point computation can be done explicitly near
t = 0 and analytically continued. The free energy is

sinh@ + /sinf 6 +2—2p

= (26 coshd — sinh0)

2-2p
1 sinh + v/sint 8 +2—2p
_ 2—In[ —— ] (6.3)

where@ is defined byt = 2% and is determined by the saddle-point equation

\/—
e he[smh9+ sinf8+2—2p 6.4)

+ 2—-2p

2=
NI

which can be solved for siifl). The free energy is zero whén= 0, negative for smalk, goes
to zero ata critica‘% and is positive thereafter. This is so for any valugah the allowed range.
A graph of " & versus% for p=0.51 is plotted in Fig. 1. With this value gf, the free energy
becomes positive & ~ 0.50 which corresponds tﬁcm ~14.

Now, we consider the antisymmetric representation. For a large class dfutisins gapped
aroundg = rrand with "k( ) > 0, which includes the semi-circle distribution (6.2), we can argue
thatl ., is always negatlve and the phase transition that we are discussing cloescar. To
begin, by changing variables in (4.9), we observe fhat=T .4, .. This symmetry is reflected in
the saddle-point equation (4.8) which, using our assumptiorpttit= p(— @), can be re-written

as
Al i 9 ~ 1 i@
té 2—-tze'2 k1
/ A0(0) s o =N 2 (6.5)
and implies(k/N) = 1/t(1—k/N). The free energy,
i ST IS ST kK 1\ .
—/ﬂdcpp((p)ln (t2e'2 +t 2e 2)+<N—2) Int (6.6)

10
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is symmetric undef\i‘ —1- 5 Moreover with a gapped distributiop( ) = 0, and the integral
&/k( )

in (6.5) is continuous &t = 1 From > 0, f(k) is monotone, and one can see in (6.5) that

f=0correspondst§ =0,f = to £ = 1 andf = 1 to & = 1. Furthermore, sincgk/‘—/,\ﬁ Inf(k),
o2r
(k/N)
goes from 0 to% and then increases back to zero Wtﬁagoes fromé to 1. T ., does not become

positive and there is no phase transition of the kind that we found for synemefiresentations.
When the distribution is ungapped, or Wh%fégi;@ becomes negative (for example wher: 0),
interesting behavior can occur, discussion of which we put off to a later time

We have found a difference between the symmetric and antisymmetric nefatese Polyakov
loops in the gauge theory which is qualitatively similar to the one found by Haend Kumar [6]
for the dual objects in supergravity: the antisymmetric loop is non-zero ingherdined phase
for all aIIowed% and the dual D5-brane exists whereas the gauge theory symmetricerstpitam
loop has a phase transition at a critical valuq\KlofThe numerical search for the dual D3-brane in

[6] combined with analytic arguments at large values of the paramete@% found no solution
at all. We have also carried out a further numerical search for ther®3ebwhich was partially
reported in [5]. We explored the region of smalland found no evidence for a solution except
for extremely small values af which we cannot rule out. If we assume that there is no solution
and that this means that the expectation value of the gauge theory quantitijesrit indicates
that, even in the deconfined phase, the gauge theory is still confiningréer ¢harge symmetric
representation sources. Of course, coming from the string theory, tacisate only for large
A. The conclusion is that the critical value éf becomes coupling constant dependent and the
function [ (T,A) goes to zero faster thafl- asA — o.

We note that a phase transition of similar nature, but in a somewhat diffeyetext of branes
with large angular momentum has recently been discussed [20].
The authors acknowledge hospitality of the Galileo Galilei Institute, AspemneCéar Physics and
Perimeter Institute. This work is supported in part by NSERC of Canad#han®lFN of Italy.

<k > 0, thusl  is a convex function which decreases from 0 to a negative minimug as
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