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1. Introduction

A beautiful picture of the quark deconfinement phase transition of finite temperature Yang-
Mills theory has emerged in the context of AdS/CFT duality [1]. The gravitational dual of this
phenomenon is the collapse of hot Anti-de Sitter space to an anti-de Sitter-Schwarzchild black
hole. Unlike asymptotically flat space, where a thermodynamic state is unstable toblack hole
collapse no matter what the temperature, at sufficiently low temperatures, anti-de Sitter space is
thought to be stable. It contains a hot gas of gravitons and possibly otherparticles. Moreover,
when it is heated to a certain critical temperature, the hot gas eventually undergoes gravitational
collapse to a spacetime which is an anti-de Sitter black hole. The temperature andentropy of the
resulting spacetime are then identified with the Hawking temperature and Beckenstein-Hawking
entropy of the black hole. The phase transition between the two phases is first order and is called
the Hawking-Page transition [2]. It is thought to be the gravity dual of the deconfinement transition
of finite temperature Yang-Mills theory.

In the strict sense, deconfinement in AdS/CFT refers to the phenomenon inN = 4 super-
symmetric Yang-Mills theory quantized on a spatial three-sphere,S3. AdS/CFT duality identifies
this theory with IIB superstring theory on a backgroundAdS5×S5 spacetime. The latter reduces
to type IIB supergravity on an asymptoticallyAdS5×S5 spacetime only when the string coupling
constant, which governs the breaking and joining of strings is small and in a low energy limit,
where energies are small compared to the curvature of the background.In the gauge theory, these
limits correspond to the largeN ’t Hooft limit, N → ∞ with λ = g2

YMN held fixed, wheregYM is
the Yang-Mills coupling constant, and then a subsequent large ’t Hooft coupling,λ → ∞ limit. By
studying the Hawking page phase transition, one is studying deconfinement inthe strong coupling
limit of the gauge theory. The largeN limit is important here since, due to the finite spatial volume,
a phase transition can only occur whenN is infinite. However one expects that the phase transition
would persist if one relaxes the largeλ limit. On the string side of the duality, very little can be
done away from the largeλ supergravity limit. The only other region where analytic computation
is possible is in the weak coupling, smallλ limit. That limit has recently been examined and found
to have a largeN phase transition which is identified as deconfinement [3]-[4]. It is conjectured
that the two limits are connected by a line of deconfining phase transitions whichstretches across
the intermediateλ regime.

In this Article, we shall review some of our recent work on the properties of the behavior of
some particular Polyakov loop expectation values in deconfined phase of the gauge theory [5]. This
work was motivated by an observation in string theory concerning the gravity dual of the Polyakov
loops that we will discuss [6]. We will elaborate on this motivation in later Sections.

2. Confinement-deconfinement and the Polyakov loop

Let us begin by reviewing the role of the Polyakov loop operator as an order parameter for
confinement in an adjoint gauge field theory [7]-[8]. The Polyakov loop,

〈

TrPei
∫ β

0 dτA0(τ,~x)
〉

=

∫

[dAµ ...]e
−∫ 1

2g2
YM

TrF2
µν+...

TrPei
∮ β

0 dτA0(τ,~x)

∫

[dAµ ...]e
−∫ 1

2g2
YM

TrF2
µν+...

(2.1)
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measures the trace of the holonomy of the gauge group on the Euclidean time circle. In pure Yang-
Mills theory, or a theory such asN = 4 super Yang-Mills theory where all matter fields transform
in the adjoint representation of the gauge group, the Euclidean path integral has a center symmetry.
It arises from gauge transformations which, in such a theory need not be periodic in Euclidean
time, they need only preserve the periodicity of the local fields. As such, they can obey a boundary
condition

g(τ +β ,~x) = cg(τ,~x)

wherec wherec = e2π i/N is the generator of theZN center of theSU(N) gauge group. Because
c commutes with everything, all local operators which transform in the adjoint representation, for
exampleFµν(τ,~x)→ g(τ,~x)Fµν(τ,~x)g†(τ,~x), remain periodic after the gauge transform. However,
the Polyakov loop transforms as

TrPei
∫ β

0 dτA0(τ,~x) → c TrPei
∫ β

0 dτA0(τ,~x) (2.2)

The center transformation appears as a global symmetry of the Euclidean path integral and it acts
on Polyakov loops. When it is a good symmetry, any combination of Polyakov loops with non-
vanishing center-charge must have vanishing expectation value. This is interpreted as confinement.
When the center symmetry is spontaneously broken, the expectation value can be non-zero. This
is interpreted as deconfinement. The representation of center symmetry hasbeen used to study the
deconfining phase transition of Yang-Mills theory [9]-[12].

The expectation value of the Polyakov loop operator is related to the free energy of Yang-Mills
theory with a classical color source inserted. If one quantizes Yang-Millstheory with the constraint
that a non-dynamical color charge is located at point~x, the free energy of the systemΓ is obtained
from the Euclidean path integral in (2.1).

e−βΓ =
〈

TrPei
∫ β

0 dτA0(τ,~x)
〉

(2.3)

Γ is the energy that is needed to insert the external charge. When the expectation value is zero, as
in the confining phase, the energy is infinite. When the expectation value is non-zero, the energy is
finite.

3. Effective field theory

In recent work, the weak coupling limit of both Yang-Mills theory andN = 4 super Yang-
Mills theory have been studied for the case where the space-time isS3 ×S1 [3]-[4]. This is an
interesting case in that, at weak coupling, the spectrum of the vector gluon fields is completely
gapped. If they are conformally coupled to the curvature of theS3, the scalar fields ofN = 4
theory are also gapped, as are the fermionic quarks. Then, in the regime where the temperature is
much less than the gap,T = 1

β << 1 (we choose theS3 to have unit radius), an effective field theory
technique can be used to find an effective action for the Polyakov loop. All of the propagating
degrees of freedom can be integrated out, leaving an effective field theory for the Polyakov loop
operator itself. The expectation value of the (appropriately renormalized)loop operator can then
be computed using this effective field theory which is a unitary one-matrix model,

〈

TrPei
∫ β

0 dτA0(τ,x)
〉

=

∫

dUe−Seff[U ]TrU
∫

dUe−Seff[U ]
(3.1)
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where, at one-loop order, the effective action is

Seff[U ] = −
∞

∑
n=1

[

zB(xn)+(−1)n+1zF(xn)
] |TrUn|2

n
(3.2)

where

x = e−
β
R , zB(x) =

6x+12x2−x3

(1−x)3 , zF(x) =
16x

3
2

(1−x)3 (3.3)

Here, we have presented the action forN = 4 Yang-Mills theory. The one for pure Yang-Mills
theory is similar and is presented in Ref. [4].Seff in (3.2) does not depend on the ’t Hooft coupling
λ . This is due to the fact that it is the one-loop approximation. Dependence onλ starts at two
loops. For pure Yang-Mills theory, it has been partially found up to ordertwo loops [13] where the
first order nature of the phase transition is confirmed.

The effective actionSeff inherits symmetries from its parent theory:

• Gauge invariance,
Seff[U ] = Seff[VUV−1] (3.4)

Note that the effective action (3.2) depends only on invariant quantities TrUn.

• Center symmetry
Seff[U ] = Seff[cU] (3.5)

Note that in (3.2), the effective action depends onU only in the center symmetric combina-
tions TrUnTrU†n.

• Further, the action is of orderN2, Seff[U = 1] ∼ N2.

Gauge invariance (3.4) allows one to diagonalize the unitary matrices to form amodel of the
eigenvalues. It turns out that this model can be solved by a saddle-pointmethod in the largeN limit
and it is found that it has a phase transition. The expectation value of the Polyakov loop vanishes
in the low temperature phase and it is nonzero in the high temperature phase. This is interpreted as
a deconfinement transition which occurs even at weak coupling. For the effective action (3.2), the
phase transition occurs atTC ≃ 0.38 which is marginal to the regimeT << 1. We will assume that
it is within the range of validity of the effective field theory technique. In the following we will
explore the deconfined phase. We will assume that we are at temperaturesjust above the critical
one and we will assume that the effective matrix model gives an accurate description of the physics
there.

The analysis of unitary matrix models and the existence of a phase transition ofthe type that
we are discussing here has a long history dating back to the seminal work ofGross and Witten [14].

4. Higher representations

The unitary matrix model can be used to calculate the expectation value of the Polyakov loop
operator in any irreducible representationR of theSU(N) gauge group,

〈TrRU(x)〉 =

∫

[dU]e−Seff[U ]TrR U
∫

[dU]e−Seff[U ]
. (4.1)
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where TrR U is called the character. We shall show in the following that (4.1) can have interesting
behavior which depends on the size and nature of the representation. Two types of representation
are easy to analyze: the completely symmetric representationsSk whose Young tableaux are a
single row withk boxes and completely antisymmetric representationsAk whose Young tableaux
are a single column withk boxes. We shall consider large values ofk so that the ratiok

N remains
finite asN → ∞ and we will study the behavior of these representations ask

N is varied.
Note that we have not normalized the Polyakov loop, as one would normally doby dividing by

a factor of the dimension of the representation. Our reason for not doingso is to be able to compare
our results directly with holographic duality where the appropriate operatoris the un-normalized
one. This immediately introduces the interesting possibility that the expectation value is bigger than
one – for example if the averaging overU were concentrated at the unit matrix – the expectation
value would simply be equal to the dimension of the representation. The free energy would be
negative, indicating that the system would “attract” the heavy quark. This apparent attraction is not
dynamical, it is statistical, simply due to the increase in entropy from the multiplicity of states of
the quark.

The center charge of a representation is equal to the number of boxes in the Young Tableau
corresponding to that representation, moduloN. Thus, both representationsSk andAk have center
chargek modN. The expectation value (4.1) is therefore expected to vanish in the confined phase
when this charge is non-zero. On the other hand, the expectation value can be non-zero in the
deconfined phase.

If the matrixU = diag[eiφ1, ...,eiφN ] were diagonal, the permutation symmetry can be used to
order the eigenvalues in a completely symmetric or completely antisymmetric representation so
that they occur in order of non-decreasing index:

TrSkU = ∑
a1≤a2≤...≤ak

eiφa1eiφa2 ...eiφak , TrAkU = ∑
a1<a2<...<ak

eiφa1eiφa2 ...eiφak (4.2)

It is convenient to obtain these expressions from generating functions

TrSkU =
∮

dt
2π it k+1

N

∏
a=1

1
1− teiφa

, TrAkU =
∮

dt
2π it k+1

N

∏
a=1

(

1+ teiφa
)

(4.3)

where the contour integral projects onto the term in a Taylor expansion of the integrand which
containsk eigenvalues. The contour in the integral overt encircles the origin. It can be moved
away from the origin if it does not cross singularities of the integrand. In the case of the anti-
symmetric representation (4.3) whenN is finite, the integrand is a polynomial and the contour can
be moved anywhere. For the symmetric representation (4.3) it should remain within the unit circle.

These can be written as the covariant expressions for the free energies,

βΓSk ≡ − 1
N

ln 〈TrSk U〉 = − 1
N

ln
1

2π i

∮

dt
1

tk+1〈exp[−Tr ln(1− tU)]〉 , (4.4)

βΓAk ≡ − 1
N

ln 〈TrAk U〉 = − 1
N

ln
1

2π i

∮

dt
1

tk+1〈exp[Tr ln(1+ tU)]〉 (4.5)

The characters in (4.4) and (4.5) have center chargek and therefore they must vanish in the center
symmetric confining phase. They can be non-zero in the deconfined phase.
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In the largeN limit, the quantities in (4.4) and (4.5) can be computed using two saddle point
approximations. The first occurs while integrating over unitary matrices in (4.1). Because of the
gauge symmetry, this is an eigenvalue model. The gauge symmetry can be used todiagonalizeU .
At largeN, the eigenvalues become classical variables and their distribution is found by minimizing
Seff plus a Jacobian from the unitary integral measure. As long ask ≪ N2, the loop operators in
(4.4) do not modify the eigenvalue distribution in the leading order at largeN. It is given by a
densityρ(φ) which is 1

N times the number of eigenvalues betweenφ andφ +dφ and is normalized,
∫ π
−π dφρ(φ) = 1. In the largeN limit the expectation values in Eq. (4.4) are computed using the

eigenvalue density,1

βΓSk = − 1
N

ln
1

2π i

∮

dt
1
t

exp

(

−N
∫ π

−π
dφρ(φ) ln(1− teiφ )−k ln t

)

. (4.6)

βΓAk = − 1
N

ln
1

2π i

∮

dt
1
t

exp

(

N
∫ π

−π
dφρ(φ) ln(1+ teiφ )−k ln t

)

. (4.7)

The second use of a saddle-point approximation is to evaluate the integral over t in (4.6) and (4.7).
Let t̂ satisfy the saddle-point equation

RSk(t̂) ≡
∫ π

−π
dφρ(φ)

t̂eiφ

1− t̂eiφ =
k
N

, RAk(t̂) ≡
∫ π

−π
dφρ(φ)

t̂eiφ

1+ t̂eiφ =
k
N

. (4.8)

The functionsRSk/Ak
(t) in (4.8) are related to the resolvent of the matrix model and are holomor-

phic functions oft with cut singularities on the unit circle determined by the support ofρ(φ). Once
the solution̂t of the saddle point is determined, the free energy is given by

βΓSk =
∫ π

−π
dφρ(φ) ln(1− t̂eiφ )+

k
N

ln t̂ . (4.9)

βΓAk = −
∫ π

−π
dφρ(φ) ln(1+ t̂eiφ )+

k
N

ln t̂ . (4.10)

The generating function technique that we have used in the above is well known. See Ref. [15] for
a recent application in a different context.

The reader might have the concern that the presence of the loop variablein the path integral,
though it does not alter the eigenvalue distribution to the leading orderN0, it will have an effect at
order 1/N and a 1/N correction in the orderN2 part of the action would contribute a term of order
N which competes with the free energy which we are computing. To see why this isnot a problem,
consider the free energy in the largeN limit is given by

NβΓ = inf
(ρ,t)

[

N2S[ρ]+λ
∫

ρ −λ +N
∫

ρ ln
(

1− teiφ)

+k ln t

]

− inf
ρ

[

N2S[ρ]+λ
∫

ρ −λ
]

(4.11)
whereS[ρ] is the effective action consisting ofSeff plus a contribution from the integration measure.
The saddle-point equations are

δS
δρ

+
1
N

ln
(

1− teiφ)

+
λ
N2 = 0 ,

∫

ρ = 1 ,
∫

ρ
teiφ

1− teiφ =
k
N

1
t

(4.12)

1We will argue that using the leading orderN0 densityρ(φ) in (4.6) is sufficient to obtainβΓSk/Ak
to leading order

N0 accuracy.
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for the first infimum and

δS
δρ

+
λ
N2 = 0 ,

∫

ρ = 1 (4.13)

for the second infimum. The eigenvalue density which satisfies (4.13) isρ̂0. Then the density
which satisfies (4.12) differs from it by a correction of order1

N , ρ̂0 + 1
N ρ̂1. However, sinceρ̂0

satisfies (4.13), it is easy to see, that if we are interested inNβΓ only to accuracy of orderN, we
can get simply usêρ0 in the equation which determinest̂ and, to the same accuracy (where we trust
the orderN but not the orderN0 contribution), in the expression forNβΓ in (4.11). This justifies our
use of the “probe approximation” where we use the eigenvalue distribution of the effective unitary
matrix model to compute the generating functions in (4.6) to (4.10). We note that asimilar probe
approximation is made when analyzing the dual objects on the string theory sideof the AdS/CFT
correspondence.

Before we proceed further, let us consider a simple example, the confined phase. Center
symmetry is an invariance under a simultaneous translation of all eigenvaluesφa → φa + 2π/N.
In the center-symmetric confined phase, the distribution is translation invariant, eigenvalues are
uniformly distributed on the unit circle and

ρconf =
1

2π
(4.14)

In the de-confined phase, on the other hand, the eigenvalues would have a non-constant distribution.
Let us put off discussing the de-confined phase until later.

With the confining eigenvalue distribution (4.14) we can integrate overφ in the saddle-point
equations (4.8),

RSk(t̂) =

{

0 |t̂| < 1
−1 |t̂| > 1

=
k
N

, RAk(t̂) =

{

0 |t̂| < 1
1 |t̂| > 1

=
k
N

(4.15)

Similarly, and consistent with this, we can integrate the free energies in (4.9) and (4.10),

βΓSk =

{ k
N ln t̂ |t| < 1

iπ +
(

1+ k
N

)

ln t̂ |t| > 1
, βΓAk =

{ k
N ln t̂ |t| < 1

(

k
N −1

)

ln t̂ |t| > 1
(4.16)

In the case of the symmetric representation, the saddle-point equation (4.15) has a solution
only when k

N = 0. We interpret the absence of a solution whenk
N 6= 0 as meaning that the expecta-

tion value vanishes. Certainly, if there is no saddle-point of a periodic function of a variableφ , the
integration is not dominated by any particular value ofφ andφ must be integrated over its entire
range. This would average the expectation value of any operator with non-zero center charge to
zero. It is in the other case, when there is a saddle point, where the largeN limit forces one to eval-
uate the integrand at the saddle point and the expectation value is genericallynon-zero. Further,
we see that the free energy has an imaginary part when|t̂| > 1 which indicates an instability. This
apparent pathology is consistent with the observation after (4.3) that the integration contour should
remain inside the unit circle. We shall henceforth ignore the region.2

2We do later consider the analytic continuation of the free energy and the solution of the saddle point equation from
the region|t| < 1 to the entire complex plane.
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Similarly, for the anti-symmetric representation, the saddle-point equation (4.15) has a solution
only when eitherkN = 0 or k

N = 1, the two cases where the antisymmetric representation is center
neutral. This is also interpreted as confinement, the expectation value vanishes in all other cases.
Note that it has an expectedk → N− k duality, though it comes from interchanging two saddle
points, one with|t̂| < 1 and one with|t̂| > 1. Neither of these saddle-points alone exhibit this
duality.

We will review the computation of the higher representation Polyakov loops withmore com-
plicated eigenvalue distributions. Before that, in the next Section, we pauseto review some of the
motivation for considering them. This motivation derives from the analysis oflarge representation
Wilson loops and the string theory dual objects in zero temperature de-confinedN = 4 Yang-Mills
theory.

5. Giant Wilson loops

In the duality between gauge field theory and string theory, the expectation value of the Wilson
loop is normally thought to correspond to an open fundamental string amplitudein string theory.
This has been made precise for the Maldacena-Wilson loop [16] which differs from the Polyakov
loop (4.1) in that it contains the scalar field of theN = 4 theory as well as the gauge field,

WM [C] = TrPe
∮

C dτ(iAµ (x)ẋµ (τ)+φ I (x)θ I |ẋ(τ)|) (5.1)

wherexµ(τ) parametrizes a closed curveC. φ I (x), I = 1, ...,6 are the scalar quark fields ofN = 4
super Yang-Mills theory andθ I is a (not necessarilyτ-independent) unit 6-vector.

In that case, the boundary of the fundamental string worldsheet is located on the loop contour
C placed at the asymptotic boundary ofAdS5. The Maldacena-Wilson loop could be made to link
periodic Euclidean time in the finite temperature field theory. Then its string theorydual would
be a disc amplitude where the boundary of the disc is located at infinity. Whether such a disc
exists depends on whether the time circle is contractable. It is not contractable in the hot AdS
background, and it is contractable on the black hole background. This was pointed out by Witten
as further evidence for the identification of the Hawking-Page transition withdeconfinement [1].

If C wraps the time circle,WM [C] carries center charge and, like the Polyakov loop, its expec-
tation value is governed by the realization of the center symmetry. Its expectation value is related
to the holonomy of a heavyW-boson which would be created by HiggsingSU(N+1) gauge sym-
metry toSU(N)×U(1) and whereθ I gives the orientation of the scalar condensate. One could
imagine larger representation objects made fromW-bosons, for example a bound state of a large
number of theW-bosons which transforms in a higher representation of the gauge group.

In the zero temperature Yang-Mills theory defined on a spatialR3, an interesting phenomenon
occurs for loops in representations where the number of boxesk in the Young tableau is large so
that k

N is finite in the largeN limit. The dual fundamental string worldsheet is replaced by a D-brane
with world-volume electric flux [17].

This was found by studying highly supersymmetric1
2-BPS loops, where some results are

known for all values of the coupling constant [18]. For the anti-symmetric representation, the
dual is a D5-brane whose world volume is a direct product ofAdS2 ⊂ AdS5 andS4 ⊂ S5. For a
symmetric representation, it is a D3-brane with world volumeAdS2×S2 ⊂ AdS5.

8
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It is interesting to ask whether these D-branes exist in the finite temperature geometry where
they would be dual to a gauge theory loop linking periodic Euclidean time. This question was stud-
ied by Hartnoll and Kumar [6] who searched for solutions of the appropriate Born-Infeld actions
on the black hole background.

For the D5-brane wrapped onS4 ⊂ S5 which corresponds to a totally antisymmetric represen-
tation on the gauge theory side, there seem to be solutions for anyk

N with the usual cutoff atk = N
dictated by the maximum size of an antisymmetric representation on the gauge theory side and a
maximum radius for embeddingS4 in S5 on the supergravity side. However, in the case of the D3-
brane, which should correspond to a totally symmetric representation, Hartnoll and Kumar could
not find any solutions at all. This fundamental difference between the two cases is what motivated
our work on the gauge theory which is summarized in Ref. [5] and which we are reviewing here.

We emphasize that in supergravity we are studying the dual of the Maldacena-Wilson loop
whereas in gauge theory our analysis is limited to the Polyakov loop. Both are governed by the
center symmetry and both can become non-zero at the deconfinement transition. At high tempera-
ture, due to decoupling of the scalar fields, they should become similar.

6. Giant Polyakov loop

Let us begin with the symmetric representationSk. We shall consider three examples of
eigenvalue distributions. First, the confining phase hasρconf =

1
2π . RSk(t) vanishes if|t| < 1 and is

−1 if |t|> 1. This is the expected discontinuity at the unit circle. Eq. (4.8) has solutionsonly when
k
N = 0, consistent with confinement.

As a second example considerρ(φ) = 1
2π (1+2pcosφ). p = 1

N〈Tr U〉 =
∫

dφρ(φ)eiφ is the
fundamental representation loop. Positivity of the density requires 0≤ p ≤ 1

2. This distribution
depends onφ and therefore is deconfined. While it is not realistic forN = 4 Yang-Mills theory, it
does occur in the strong-coupling phase of largeN 2-dimensional lattice Yang-Mills theory [14].

There is one solution ofRSk(t̂) = k
N in the region|t̂| < 1 at t̂ = k

N/p. (If k
N andp are such that

|t̂| > 1, bothRSk andΓSk should be extended there by analytic continuation.) The free energy is

ΓSk =
k
N

ln

[

k/N
ep

]

, (6.1)

wheree= 2.718. . .. ΓSk has the interesting feature that, ask
N is increased, it changes sign from

negative to positive. This results in a phase transition which occurs whenk
N =

(

k
N

)

crit = ep. When
k
N <

(

k
N

)

crit, ΓSk is negative and the loop expectation value,e−NΓ, is exponentially large. When
k
N >

(

k
N

)

crit, ΓSk is positive and the loop vanishes forN → ∞. This phase transition implies that,
even in the deconfined phase, sufficiently large symmetric representationsare still confined.

As a check of the saddle-point approximation to thet-integral in this simple example, observe
that, if for the moment we assume thatk andN are finite, we can integrate (4.6) explicitly to get
e−NΓSk = Nk

k! pk. Using the Stirling formula and takingk∼ N → ∞ reproduces (6.1).
To see this behavior in another example, consider the semi-circle distribution which, for |φ | <

2arcsin
√

2−2p, is

ρ(φ) =
cosφ

2

π(2−2p)

√

2−2p−sin2 φ
2

(6.2)
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Figure 1: The free energyΓSk
(θ) as a function ofkN in the semi-circle distribution withp = 0.51.

and which vanishes in the gap 2arcsin
√

2−2p≤ |φ | ≤ π. We still use the fundamental loop,p, as a
parameter and now12 ≤ p≤ 1. This is the distribution in the weak coupling phase of 2-dimensional
lattice Yang-Mills theory [14]. It is also an approximation to the deconfined distribution for weakly
coupledN = 4 Yang-Mills theory [4][19]. For sufficiently weak coupling, it could be accurate
near the phase transition wherep = 1

2. The saddle point computation can be done explicitly near
t = 0 and analytically continued. The free energy is

ΓSk = (2θ coshθ −sinhθ)
sinhθ +

√

sinh2 θ +2−2p
2−2p

− 1
2
− ln

[

sinhθ +
√

sinh2 θ +2−2p
2−2p

]

, (6.3)

whereθ is defined bŷt = e2θ and is determined by the saddle-point equation

k
N

+
1
2

= coshθ

[

sinhθ +
√

sinh2 θ +2−2p
2−2p

]

, (6.4)

which can be solved for sinh(θ). The free energy is zero whenk = 0, negative for smallk, goes
to zero at a criticalkN and is positive thereafter. This is so for any value ofp in the allowed range.
A graph ofΓSk versus k

N for p = 0.51 is plotted in Fig. 1. With this value ofp, the free energy
becomes positive atθ ≃ 0.50 which corresponds tokN crit. ≃ 1.4.

Now, we consider the antisymmetric representation. For a large class of distributions gapped

aroundφ = π and with
dRAk

(t̂)
dt̂ > 0, which includes the semi-circle distribution (6.2), we can argue

that ΓAk is always negative and the phase transition that we are discussing does not occur. To
begin, by changing variables in (4.9), we observe thatΓAk = ΓAN−k. This symmetry is reflected in
the saddle-point equation (4.8) which, using our assumption thatρ(φ) = ρ(−φ), can be re-written
as

1
2

∫ π

−π
dφρ(φ)

t̂
1
2 ei φ

2 − t̂−
1
2 e−i φ

2

t̂
1
2 ei φ

2 + t̂−
1
2 e−i φ

2

=
k
N
− 1

2
(6.5)

and implieŝt(k/N) = 1/t̂(1−k/N). The free energy,

ΓAk
= −

∫ π

−π
dφρ(φ) ln

(

t̂
1
2 ei φ

2 + t̂−
1
2 e−i φ

2

)

+

(

k
N
− 1

2

)

ln t̂ (6.6)

10
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is symmetric underkN → 1− k
N . Moreover, with a gapped distribution,ρ(π) = 0, and the integral

in (6.5) is continuous at̂t = 1. From
dRAk

(t̂)

dt̂ > 0, t̂(k) is monotone, and one can see in (6.5) that

t̂ = 0 corresponds tokN = 0, t̂ = ∞ to k
N = 1 andt̂ = 1 to k

N = 1
2. Furthermore, since

dΓAk
d(k/N) = ln t̂(k),

d2ΓAk
d(k/N)2 > 0, thusΓAk is a convex function which decreases from 0 to a negative minimum ask

N

goes from 0 to1
2 and then increases back to zero whenk

N goes from1
2 to 1. ΓAk does not become

positive and there is no phase transition of the kind that we found for symmetric representations.

When the distribution is ungapped, or when
dRAk

(t̂)
dt̂ becomes negative (for example whenp < 0),

interesting behavior can occur, discussion of which we put off to a later time.
We have found a difference between the symmetric and antisymmetric representation Polyakov

loops in the gauge theory which is qualitatively similar to the one found by Hartnoll and Kumar [6]
for the dual objects in supergravity: the antisymmetric loop is non-zero in the deconfined phase
for all allowed k

N and the dual D5-brane exists whereas the gauge theory symmetric representation
loop has a phase transition at a critical value ofk

N . The numerical search for the dual D3-brane in

[6] combined with analytic arguments at large values of the parameterκ =
√

λ
4

k
N found no solution

at all. We have also carried out a further numerical search for the D3-brane, which was partially
reported in [5]. We explored the region of smallκ and found no evidence for a solution except
for extremely small values ofκ which we cannot rule out. If we assume that there is no solution
and that this means that the expectation value of the gauge theory quantity vanishes, it indicates
that, even in the deconfined phase, the gauge theory is still confining for large charge symmetric
representation sources. Of course, coming from the string theory, this isaccurate only for large
λ . The conclusion is that the critical value ofk

N becomes coupling constant dependent and the
function

[

k
N

]

crit. (T,λ ) goes to zero faster than4√
λ

asλ → ∞.
We note that a phase transition of similar nature, but in a somewhat differentcontext of branes

with large angular momentum has recently been discussed [20].
The authors acknowledge hospitality of the Galileo Galilei Institute, Aspen Center for Physics and
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