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1. Introduction

Confinement is the most important property of the QCD vacuum (see [@r Bjfiews) and as
shown on the lattice and analytically it can be quite naturally explained as afisimgproperties
of quantum stochastic ensemble of nonperturbating® fields filling QCD vacuum. The develop-
ment of this approach in a systematic way started in 1987 [3] (see, e.gs fHaenple of earlier
investigations concerning stochasticity of QCD vacuum). The nontriviattre ofnp vacuum
can be described by a set of nonlocal gauge-invariant field streogtblators (FC). We discuss
this scenario in the present talk (see [5] for an extended version of sesuks of this talk).

QCD sum rules [6] were suggested as an independent approagQteD dynamics, not
addressing directly confinement mechanism. The key role is played by ghuialensat&,, which
is defined asp average of the following type:

Gz = Z2(F2, (OF2,(0) (L.1)

However the relation 06, to confinement is rather tricky, sin€& is not an order parameter
and, in particular, neither perturbative ngu contributions to this quantity vanish in either phase.
On the other hand one can show (see details in [7]) that the scale offolernant temperature is
set by the condensate, or, more precisely, by its electric part G;/‘l. One clearly sees some
tension between this "small" scale and a "large"” mass scale in QCD givergbyhe mass of the
lightest 0"t glueball, which is about 1.5 GeV.

The question about the origin of this mismatch turned out to be rather deegs ffluggested in
[3], that there is another important dimensionfull parameter charactenpidgnamics of vacuum
fields: correlation lengtiA (also denoted a%; in some papers). The crucial feature of stochastic
picture found in [9] is that the lowest, quadratic, nonlocal K&,y (X)F)4(y)) describes alhp
dynamics with very good accuracy. It was also shown that a simple erpahf®rm of quadratic
correlators found on the lattice [9] allows to calculate the correlation lehgthtering these expo-
nents, and sincg is small, potential relativistic quantum-mechanical picture is applicable and all
QCD spectrum is defined mostly by string tensmf{which is an integral characteristic of the non-
local correlator, see below) and not by its exact profile (see [3,d0fviews of meson, glueball
hybrid spectra).

However to establish the confinement mechanism unambiguously, one &eoalde to cal-
culate vacuum field distributions, i.e. field correlators, self-consistemtlyhé long run it means
that one is to demonstrate that it is essential property of QCD vacuum figdésnble to be char-
acterized by correlators, which support confinement for temperafubegow some critical value
Te, and deconfinement at > T..

The main aim of this talk is to present this set of equations as a self-congigehanism of
confinement and to clarify qualitative details of the FC - gluelump connection.

2. Wegner-Wilson loop, Field Correlatorsand Green’s Functions

The Wilson loop is the basic element for discussion of confinement (ar¢adaialso it enters
as a main dynamical kernel in the Fock-Feynman-Schwinger RepresanBB8R) of Green’s
functions of any white QCD object [11].
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It is convenient to use nonabelian Stokes theorem (see [2] for refeseand discussion) for
the Wilson loop) and to rewrite it as an integral over the surfaiteside the contou€ = C(x,y):

(W(C)) = <TrPexp<ig/C.Ap(z)dzu> >: <Tr=@exp<ig/SF(u)ds(u)> >:

— TrP, exp Zz(ig)”/<<F(u1)..F(un))>dsl..ds1 —exp ZZAW S 2.1)
n= S n=
The central role in the discussed method is played by quadratic (Gaus€§laf)the form

Duv,)\o = gZ<TrF“V(X)<D(x,y)FAU(y)tb(y, X)>7 (2-2)

whereF,, is the field strength an®(x,y) is the parallel transporter. Correlation lengthsfor
different channels are defined in terms of asymptotics of (2.2) at larggndiss: exp—|x—y|/A).
The physical role of\; is very important since it distinguishes two regimes: one expects validity of
potential-type approach describing the structure of hadrons of spatd® and at temporal scale
Tq for Ai < R, Ty, while in the opposite case, whadn>> R, T, the nonpotential description in terms
of spatially homogeneous condensates can be applied.

At zero temperature th®(4) invariance of Euclidean space-time hdi@sd FC (2.2) is rep-
resented through two scalar functidbé&z), D1(z) (wherez= x—Yy) as follows

1| 0
Duvao(® = (@i~ 081D + 5 | (a8~ 208+
m

+(;92V(Za5u/\ — 2 5;10)} D1(2). (2:3)

One has to distinguish from the very beginning perturbative rgmgarts of the correlators
D(z), D1(2). Beginning with the former, one easily finds at tree level

DPO(2)=0 ; D‘f"o(z):Cz(f)‘l—ZS% (2.4)

whereC,( ) is fundamental Casimi€,(f) = (N2 —1)/2N.. At higher orders situation becomes
more complicated. Namely, one hasxdbop order

DP"(2) = D?%(2)-G"(2) ; DP"(z) = DP°(2)- G (2) (2.5)
where the gauge-invariant functiogs" (z), G(ln) (z) has the following general structure:
G"(2),G"(2) ~ af [ca(loguz)" + ..

Thus we assume (and confirm aposteriori) that the following decomposiien pdace (van-
ishing of the perturbative part &(z) is shown in [12]

D(2) =D"™(2) ; D1(2) =D}(2) +D1"(2) (2.6)

1All treatment in this paper as well as averaging over vacuum fields isiddhe Euclidean space. Notice that only
after all Green'’s functions are computed, analytic continuation to Minkibspace-time can be accomplished.
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andD(z) has a smooth limit when— 0. Notice that byD1(0) we always understanp "conden-

sate" part in what follows:
_ 6N

Gz = —(D"(0) +DI"(0) 27)

As is shown below, the correlation lengthsandA; of D(z) andDTp(z) respectively appear to
be just inverse masses of the corresponding glueltimps1/M;.

Having analytic expressions for FCs one might ask how to check themsvesperimental
and lattice data. On experimental side in hadron spectroscopy one nmeasgges and transition
matrix elements, which are defined by dynamical equation and the latter caethe@iipotential
type due to smallness dfj. In static potential only integrals over distance enter and the spin-
independent static potential can be written as [3]

r o0
Vqé(f)ZZ/ (r—/\)d/\/ dvDE(v/A2+v2)+
0 0
r ©
+/ )‘d/\/ DE(VAZ+v2). (2.8)
0 0
Making use of (2.4) together with definition of the string tension [3],
1 2
o= E//d zD(z), (2.9)

one obtains from (2.8) the standard form of the static potentidilifer 3 at distances > A
dag(r
Voa(r) = ar—3fr()+ﬁ()\/r, a2). (2.10)

Asis argued belowd ~ 0.1 Fm, so that the form (2.10) is applicable in the whole range of distances
r > 0.1 fm provided asymptotic freedom is taken into accourad(r) in (2.10).

3. Gluelumpsand FC

In this section we establish a connection of BCz) andD;(z) with the gluelump Green’s
functions.

To proceed one can use the background field formalism [13][14]revine notions of valence
gluon fielda, and background field, are introduced, so that total gluonic fieg is written as

The main idea we are going to adopt here is suggested in [15].
Now we turn to the analytic calculation of FC in terms of gluelump Green'’s funcfiorthis
end we insert (3.1) into (2.2) and have fg, (x):

Here, the terrﬂ:lﬂff> contains only the fieIcBE,. It is clear that when one averages over figfd
and sums finally over all color indices one actually exploits all the fields with color indices from
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F‘EE), so that the terrF,E\E,‘) can be omitted, if summing over all indicass presumed to be done at
the end of calculation (see [15] for more discussion).
As aresulD ) can be written as

—po D 2
DNVJ\U(X’y)_ uvAa+DuvAo+DuvAa (3.3)

where the superscript 0,1,2 refers to the poweg cdming from the ternig[a,, ay|.
We can address now an important question about the relation betweennBGQgualump
Green's functions. We begin with 1-gluon gluelump, whose Green'sifumeceads

G (%,y) = (Traau () D(x, y)au (¥)). (3.4)

As shown in [16], the first term in (3.5) is connected to the functidpsind it can be written
as follows

2
© _ 9 0 9 ~uy (0)
Dyyac®y) = {ax“ 3, Gyo (X,Y) + perm} +A,0 00 (3.5)
whereALa o contains contribution of higher FCs, which we systematically discard.

On the other hand one can fimﬁ}\?)(x, y) from the FFSR foGLl\?) [11] expressionT] written
as

Gi15" (x.y) = Tra | dS(DZ)yexp(—K) (W, (Cuy). (3.6)
where the spin-dependent W-loop is
WS, (Cy) = PR {exp(ig / B, dz,\)epr} 3.7)
uv

and the gluon spin factor is efp= exp(2ig /5 dtFe(z(1))) with Fg made of the background field
By only.

Analogous expression can be constructed for Green’s functiomgbfdi gluelump. It is given
by the following expression

G2 (x.Y) = (Tra( f22°F4e a8 (x)ab (X) TSP (x,y)T " x

xaf, ()aG (y)) = NZ(NZ = 1)(83 Svo — 8ua 8,2 )G (2). (3.8)
At small distance§(?) (x,y) is dominated by perturbative expansion terms,

1
?a
however, as we already discussed in details, all these perturbativeae¥wenceled by those from
higher FCs [12] (triple, quartic, etc...), therefore expansion in fadisstdth np terms of dimension
four.

To identify thenp contribution toG(29") (z) we rewrite it as follows:

G2 (z) ~ (3.9)

G2 (7) /0 " ds, /O " d9(D21)ox(D22)0c TV (C1, C) (3.10)
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where the two-gluon gluelump W-lodfs (Cy,Cz) can be written as (in the Gaussian approxima-
tion)

1 A Aa
Vg (C1,C2) = exp{—2 I/ dnw<u>dma<v><av<u>¢m<v>>}. (3.11)
S
and the total surfac8 consists of 3 pieces, as shown in Fig.1
Fuvdmyy (U) = Fuuds,y (u) — 2igd1(F(u)) (3.12)

where(lf) has Lorentz tensor and adjoint color indicR-;ﬁ’ and lives on gluon trajectories, i.e. on
the boundaries d. In full analogy with (3.5) we have
4 N2 -1
D(z) = g(;)c;@g')(z) (3.13)
The crucial point is that the Green’s function (3.6), (3.8) can be cakdiia terms of the same
FCsD(z), D1(2). Indeed one has

G™(2) = (f|exp(—Hul2)) i) (3.14)

where the indexv stays for 1-gluon or 2-gluon gluelump Hamiltonians. The latter are exgiesse
via the same FCB(z), D1(z) (see [17] and references therein):

Hw = Ho[u] +AHL [, V] + AHcou[D4] +AHstring[Da V] (3.15)

where the last terrilsying[D, V] depends o (z) via adjoint string tension

Oadj = % /0 d?zD(2) (3.16)

and Hamiltonian depends on einbein fieldandv.

The self-consistent regimes correspond to different asymptotics oblingoss to these equa-
tions. In Coulomb phase of a gauge theory hidih, Hog exhibit no mass gap, i.e. largeasymp-
totic of (3.14) is power-like. The functiob(z) vanishes in this phase and W-loop obeys perimeter
law. In the confinement phase realized in Yang-Mills theory at low tempestutypical large-
pattern is given by

D(2),D1(2) ~ exp(—|2|/A)

i.e. there is a mass gap for bdthy, Hog.

Confining solutions are characterized by W-loops obeying area lawthér words, Hamilto-
nians expressed in terms of interaction kernels dependiri®(pr D1(z) exhibit mass gap if these
kernels are confining. On the other hand the same mass gap plays a rokerstigorrelation
length of the vacuum. This should be compared with well known mean-fielchitgpoda In our
case the role of mean-field is played by quadratic FC, which develop$rin@i-Gaussian term
D(z). Notice that the exponential form of its large distance asymptotic&-€zfp'A) (and not, let’s
say, expp—22/A?) ) is dictated by spectral expansion of the corresponding Green’tiéarat large
distances.

Full solution of the above equations is a formidable task not addressesd hgra. Instead,
as a necessary prerequisite we check below different asymptotic regimdedemonstrate self-
consistency of the whole picture.
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We begin with small distance region. The part of contribution td1(z) at small distances
comes from the small distance (small loop) contribution of the Wilson loop with ribe3[3],
W(C) = exp(— LG, ).

As a result one obtains

ACy(Has1l  o?
Di(2) = 2(,1)0{524 + %262. (3.17)

Itis remarkable that the sign of timp correction is positive.
At large distances one can use the gluelump Hamiltonian for one-gluon gluélomp17] to
derive the asymptotics

1
_ 2G,(f)asMg >oad,-efMél>‘z|

g PIVISENY (3.18)

Dl(Z)

whereM{! = (1.2 1.4) GeV for oy = 0.18 Ge\? [17, 18].
We now turn to the FMD(z) as was studied in [16]. The relation (3.13) connéd2{sg) to the
two-gluon gluelump Green’s function and we shall write it in the form

G (2) =GP (2) + G (2) (3.19)
whereG%zg”(z) contains purely perturbative contributions which are subtracted by hagler
FCs, whiIeGﬁz,?') (z) containmpand possible perturbativexpinterference terms. We are interested
in the contribution of the FGFF) to G(29)(z), whenz tends to zero.

One can envisage two types of contributions:
a) In line with the treatment dd,, Eq. (3.17), one can write the term, representing two-gluon
gluelump as two nearby one-gluon gluelumps which yield£f),

94NCGZ
4172

AD4(2) = — (3.20)

b) in this case one should consider the diagram given in Fig. 1, which yletdmnswer (for details
see Appendix of [5]).

ADp(2) = 2N2g*h(2). (3.21)

where at smalt, h(z) ~ %m) Iog2 (’\";@ , Ao is of the order of correlation length.

At large distances one use the two-gluon gluelump Hamiltonian as in [17] ahthiéncorre-
sponding spectrum and wave functions, see [17] and appendix Bjdiojldetails. As a result one
obtains in this approximation

4 N2 -1
D(2) = 9(62>o.10f2e-M52>2, M|z > 1 (3.22)

whereMéz) is the lowest two-gluon gluelump mass found in [17, 18] to be améﬁ)t: (25+2.6)
GeV.

We shall discuss the resulting propertiexdk) andD1(X) in the next section.
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4. Discussion of Consistency

We start with the check consistency fz). As is shown aboveD(z) has the following

behavior at smalt
D(Ao)log (Wé) (4.1)

Sinceas(u(2)) ~ 2m/Bolog(Az)~* the first term is subleading at— 0 and the last term on the
r.h.s. tends to a constant:

K@),
2

D(2) ~ —4Nca2(1(2))Ge + N2 222 é

2 2
D(0) = 5£,D(A0) (Z}) (4.2)

Since from (4.2) one can infer, thB0) ~ 0.15D(Ag) for N; = 3, whereAg > AE. SoD(2) is an
increasing function of at smallz, z < Ag, and forz>> A one observes exponential falloff. The
qualitative picture illustrating this solution f@(z) is shown in Fig.2.

This pattern may solve qualitatively the contradiction between the valuBg@festimated
from the string tensio(0) ~ -5 ~ 0.35 GeV and the value obtained in naive way from the
gluon condensat®g,(0) = %Gz ~ (0.007+0.012) GeV*. One can see thddy(0) ~ (30+
54)Dg,(0). This seems to be a reasonable explanation of the mismatch discussed in the intro
duction.

As was shown in [16], the large distance exponential behavior is seiftent, since (as-
suming that it persists for alt, while smallz region contributes very little) from the equality
0 = A °D,(0), comparing with (3.22) one obtains

Ot
A2
where inas(u) the scaleu corresponds roughly to the gluelump average momentum (inverse ra-
dius) 4o ~ 1 GeV. Thus (4.3) yieldsts(o) =~ 0.4 which is in reasonable agreement withfrom
other systems .

We end this section with discussion of three points:

1) D(z) andD1(2z) have been obtained here in the leading approximation, when gluelumps of
minimal number of gluons contribute: 2 f@r(z) and 1 forD1(z). In the higher orders oD(as)
one has an expansion of the type

0.1-8ma2(N2 - 1)0? = (4.3)

D(2) = D (2) 4+ ¢;adD9) (2) + c,aDBM (2) + ...

D1(2) =D (2) + c,afD ™ (2) + . (4.4

Hence the asymptotic behavior féx(z) will contain exponent oM |z| too, but with a small
preexponent coefficient.

2) The behavior 0D(z),D >( z) at smallzis defined by NP terms of dimension four, which
are condensat@; , and the S|m|Iar term from the expansion of &mamely,

s g
(expF) :1+4g2/0 dr/o At (F(u(t))F (u(T)) + ... (4.5)

therefore one does not encounter mixed termsmkg).



Confinement, deconfinement and chiral symmetry breakingin Q Yuri Simonov

3) correlation lengthd , A; are found from gluelump masses,

A =1/MP, MY ~12+14GeV, A, ~02+0.15fm (4.6)

The valuel\/l(()l) in (4.6) is taken from the calculations in [17]. The same is trudXpas it is seen

from (3.8), whereG(29) corresponds to two-gluon subsystem angular momerttesO indepen-
dently ofuv,Ao.
Hence one obtains
1 .
vick

A 2 2008fm M? ~25GeV. (4.7)

where the value/léz) ~ 2.5 GeV is taken from [17].

5. Conclusions

We have derived, following the method of [13, 14] the expressions @DFz), D1(z) in
terms of gluelump Green’s functions. This is done in Gaussian approximalfibg. latter are
calculated using Hamiltonian wherg dynamics is given byd"P(z), D}P(2). In this way one
obtains selfcoupled equations for these functions, which allow two typgeslations: 1)D"P(z) =
0,D7P(2) =0, i.e. nonpeffects at all; 2D"P(z), D}P(z) are nonzero and defined by the only scale,
which should be given in QCD, e.g. string tensigror Aqgcp. All other quantities are defined
in terms of these basic ones. We have checked consistency of selid@agplations at large and
small distances and found that to the ordgas) no mixed perturbativeyp terms appear. The
functionD1(z) can be represented as a sum of perturbativengridrms, whileD(z) contains only
np contributions.

We have found a possible way to explain the discrepancy between tregawalues of field
strength taken fron®, and fromo by showing thaD(z) has a local minimum a= 0 and grows
atz~ A. Small value ofA and large value of the gluelump madg = 1/A ~ 2.5 GeV explains
the lattice data foA ~ 0.1 Fm. Thus the present paper argues that relevant degrees dafrfreed
ensuring confinement are gluelumps, described self-consistently in thealige of FCs.
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D(z)

Fig. 2

11



