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1. Introduction

Confinement is the most important property of the QCD vacuum (see [1, 2] for reviews) and as
shown on the lattice and analytically it can be quite naturally explained as arisingfrom properties
of quantum stochastic ensemble of nonperturbative (np) fields filling QCD vacuum. The develop-
ment of this approach in a systematic way started in 1987 [3] (see, e.g. [4] as example of earlier
investigations concerning stochasticity of QCD vacuum). The nontrivial structure ofnp vacuum
can be described by a set of nonlocal gauge-invariant field strength correlators (FC). We discuss
this scenario in the present talk (see [5] for an extended version of someresults of this talk).

QCD sum rules [6] were suggested as an independent approach tonpQCD dynamics, not
addressing directly confinement mechanism. The key role is played by gluoncondensateG2, which
is defined asnpaverage of the following type:

G2 =
αs

π
〈Fa

µν(0)Fa
µν(0)〉 (1.1)

However the relation ofG2 to confinement is rather tricky, sinceG2 is not an order parameter
and, in particular, neither perturbative nornp contributions to this quantity vanish in either phase.
On the other hand one can show (see details in [7]) that the scale of deconfinement temperature is
set by the condensate, or, more precisely, by its electric part:Tc ∼ G1/4

2 . One clearly sees some
tension between this "small" scale and a "large" mass scale in QCD given by, e.g. the mass of the
lightest 0++ glueball, which is about 1.5 GeV.

The question about the origin of this mismatch turned out to be rather deep. Itwas suggested in
[3], that there is another important dimensionfull parameter characterizingnpdynamics of vacuum
fields: correlation lengthλ (also denoted asTg in some papers). The crucial feature of stochastic
picture found in [9] is that the lowest, quadratic, nonlocal FC,〈Fµν(x)Fλσ (y)〉 describes allnp
dynamics with very good accuracy. It was also shown that a simple exponential form of quadratic
correlators found on the lattice [9] allows to calculate the correlation lengthλ entering these expo-
nents, and sinceλ is small, potential relativistic quantum-mechanical picture is applicable and all
QCD spectrum is defined mostly by string tensionσ (which is an integral characteristic of the non-
local correlator, see below) and not by its exact profile (see [3, 10] for reviews of meson, glueball
hybrid spectra).

However to establish the confinement mechanism unambiguously, one shouldbe able to cal-
culate vacuum field distributions, i.e. field correlators, self-consistently. In the long run it means
that one is to demonstrate that it is essential property of QCD vacuum fields ensemble to be char-
acterized by correlators, which support confinement for temperaturesT below some critical value
Tc, and deconfinement atT > Tc.

The main aim of this talk is to present this set of equations as a self-consistentmechanism of
confinement and to clarify qualitative details of the FC - gluelump connection.

2. Wegner-Wilson loop, Field Correlators and Green’s Functions

The Wilson loop is the basic element for discussion of confinement (area law), but also it enters
as a main dynamical kernel in the Fock-Feynman-Schwinger Representation (FFSR) of Green’s
functions of any white QCD object [11].

2



P
o
S
(
Q
C
D
-
T
N
T
0
9
)
0
4
2

Confinement, deconfinement and chiral symmetry breaking in QCD Yuri Simonov

It is convenient to use nonabelian Stokes theorem (see [2] for references and discussion) for
the Wilson loop) and to rewrite it as an integral over the surfaceS inside the contourC = C(x,y):

〈W(C)〉 =

〈

TrPexp

(

ig
∫

C
Aµ(z)dzµ

) 〉

=

〈

TrP exp

(

ig
∫

S
F(u)ds(u)

) 〉

=

= TrPx exp
∞

∑
n=2

(ig)n
∫

S
〈〈F(u1)..F(un)〉〉ds1..dsn = exp

∞

∑
n=2

∆(n)[S] (2.1)

The central role in the discussed method is played by quadratic (Gaussian)FC of the form

Dµν,λσ ≡ g2〈TrFµν(x)Φ(x,y)Fλσ (y)Φ(y,x)〉, (2.2)

whereFµν is the field strength andΦ(x,y) is the parallel transporter. Correlation lengthsλi for
different channels are defined in terms of asymptotics of (2.2) at large distances: exp(−|x−y|/λi).
The physical role ofλi is very important since it distinguishes two regimes: one expects validity of
potential-type approach describing the structure of hadrons of spatial size R and at temporal scale
Tq for λi ≪ R,Tq, while in the opposite case, whenλi ≫ R,Tq the nonpotential description in terms
of spatially homogeneous condensates can be applied.

At zero temperature theO(4) invariance of Euclidean space-time holds1 and FC (2.2) is rep-
resented through two scalar functionsD(z), D1(z) (wherez≡ x−y) as follows

Dµν,λσ (z) = (δµλ δνσ −δµσ δνλ )D(z)+
1
2

[

∂
∂zµ

(zλ δνσ −zσ δνλ )+

+
∂

∂zν
(zσ δµλ −zλ δµσ )

]

D1(z). (2.3)

One has to distinguish from the very beginning perturbative andnp parts of the correlators
D(z), D1(z). Beginning with the former, one easily finds at tree level

Dp,0(z) = 0 ; Dp,0
1 (z) = C2( f )

4αs

π
1
z4 (2.4)

whereC2( f ) is fundamental CasimirC2( f ) = (N2
c −1)/2Nc. At higher orders situation becomes

more complicated. Namely, one has atn-loop order

Dp,n(z) = Dp,0
1 (z) ·G(n)(z) ; Dp,n

1 (z) = Dp,0
1 (z) ·G(n)

1 (z) (2.5)

where the gauge-invariant functionsG(n)(z), G(n)
1 (z) has the following general structure:

G(n)(z),G(n)
1 (z) ∼ αn

s [cn(logµz)n + ...]

Thus we assume (and confirm aposteriori) that the following decomposition takes place (van-
ishing of the perturbative part ofD(z) is shown in [12]

D(z) = Dnp(z) ; D1(z) = Dp
1(z)+Dnp

1 (z) (2.6)

1All treatment in this paper as well as averaging over vacuum fields is donein the Euclidean space. Notice that only
after all Green’s functions are computed, analytic continuation to Minkowskii space-time can be accomplished.
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andD(z) has a smooth limit whenz→ 0. Notice that byD1(0) we always understandnp "conden-
sate" part in what follows:

G2 =
6Nc

π2 (Dnp(0)+Dnp
1 (0)) (2.7)

As is shown below, the correlation lengthsλ andλ1 of D(z) andDnp
1 (z) respectively appear to

be just inverse masses of the corresponding gluelumpsλ j = 1/M j .
Having analytic expressions for FCs one might ask how to check them versus experimental

and lattice data. On experimental side in hadron spectroscopy one measures masses and transition
matrix elements, which are defined by dynamical equation and the latter can be used of potential
type due to smallness ofλ j . In static potential only integrals over distance enter and the spin-
independent static potential can be written as [3]

VQQ̄(r) = 2
∫ r

0
(r −λ )dλ

∫ ∞

0
dνDE(

√

λ 2 +ν2)+

+
∫ r

0
λdλ

∫ ∞

0
DE

1 (
√

λ 2 +ν2). (2.8)

Making use of (2.4) together with definition of the string tension [3],

σ =
1
2

∫ ∫

d2zD(z), (2.9)

one obtains from (2.8) the standard form of the static potential forNc = 3 at distancesr ≫ λ

VQQ̄(r) = σ r − 4αs(r)
3r

+O(λ/r,α2
s ). (2.10)

As is argued below,λ ≈ 0.1 Fm, so that the form (2.10) is applicable in the whole range of distances
r > 0.1 fm provided asymptotic freedom is taken into account inαs(r) in (2.10).

3. Gluelumps and FC

In this section we establish a connection of FCD(z) andD1(z) with the gluelump Green’s
functions.

To proceed one can use the background field formalism [13][14], where the notions of valence
gluon fieldaµ and background fieldBµ are introduced, so that total gluonic fieldAµ is written as

Aµ = aµ +Bµ . (3.1)

The main idea we are going to adopt here is suggested in [15].
Now we turn to the analytic calculation of FC in terms of gluelump Green’s function. To this

end we insert (3.1) into (2.2) and have forFµν(x):

Fµν(x) = ∂µAν −∂νAµ − ig[Aµ ,Aν ] = D̂µaν − D̂νaµ − ig[aµ ,aν ]+F(B)
µν . (3.2)

Here, the termF(B)
µν contains only the fieldBb

µ . It is clear that when one averages over fieldaa
µ

and sums finally over all color indicesa, one actually exploits all the fields with color indices from

4
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F(B)
µν , so that the termF(B)

µν can be omitted, if summing over all indicesa is presumed to be done at
the end of calculation (see [15] for more discussion).

As a resultDµν,λσ can be written as

Dµν,λσ (x,y) = D(0)
µν,λσ +D(1)

µν,λσ +D(2)
µν,λσ (3.3)

where the superscript 0,1,2 refers to the power ofg coming from the termig[aµ ,aν ].
We can address now an important question about the relation between FCs and gluelump

Green’s functions. We begin with 1-gluon gluelump, whose Green’s function reads

G(1g)
µν (x,y) = 〈Traaµ(x)Φ̂(x,y)aν(y)〉. (3.4)

As shown in [16], the first term in (3.5) is connected to the functionsD1 and it can be written
as follows

D(0)
µν,λσ (x,y) =

g2

2N2
c

{

∂
∂xµ

∂
∂yλ

G(1g)
νσ (x,y)+ perm

}

+∆(0)
µν,λσ , (3.5)

where∆(0)
µν,λσ contains contribution of higher FCs, which we systematically discard.

On the other hand one can findG(1g)
µν (x,y) from the FFSR forG(1g)

µν [11] expression [?] written
as

G(1gl)
µν (x,y) = Tra

∫ ∞

0
ds(Dz)xyexp(−K)〈WF

µν(Cxy)〉, (3.6)

where the spin-dependent W-loop is

WF
µν(Cxy) = PPF

{

exp(ig
∫

Bλ dzλ )expF

}

µν
(3.7)

and the gluon spin factor is expF ≡ exp(2ig
∫ s

0 dτF̂B(z(τ))) with F̂B made of the background field
Bµ only.

Analogous expression can be constructed for Green’s function of 2-gluon gluelump. It is given
by the following expression

G(2gl)
µν,λσ (x,y) = 〈Tra( f abcf de faa

µ(x)ab
ν(x)TcΦ̂(x,y)T f×

×ad
λ (y)ae

σ (y)〉 ≡ N2
c (N2

c −1)(δµλ δνσ −δµσ δνλ )G(2gl)(z). (3.8)

At small distancesG(2gl)(x,y) is dominated by perturbative expansion terms,

G(2gl)(z) ∼ 1
z4 , (3.9)

however, as we already discussed in details, all these perturbative termsare canceled by those from
higher FCs [12] (triple, quartic, etc...), therefore expansion in fact starts withnp terms of dimension
four.

To identify thenpcontribution toG(2gl)(z) we rewrite it as follows:

G(2gl)(z) =
∫ ∞

0
ds1

∫ ∞

0
ds2(Dz1)0x(Dz2)0xTrWΣ(C1,C2) (3.10)

5
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where the two-gluon gluelump W-loopWΣ(C1,C2) can be written as (in the Gaussian approxima-
tion)

TrWΣ(C1,C2) = exp

{

−1
2

∫

s

∫

dπµν(u)dπλσ (v)〈F̂µν(u)Φ̂F̂λσ (v)〉
}

. (3.11)

and the total surfaceSconsists of 3 pieces, as shown in Fig.1

Fµνdπµν(u) = Fµνdsµν(u)−2igdτ(F̂(u)) (3.12)

where(F̂) has Lorentz tensor and adjoint color indicesFab
i j and lives on gluon trajectories, i.e. on

the boundaries ofSi . In full analogy with (3.5) we have

D(z) =
g4(N2

c −1)

2
G(2gl)(z) (3.13)

The crucial point is that the Green’s function (3.6), (3.8) can be calculated in terms of the same
FCsD(z), D1(z). Indeed one has

G(w)(z) = 〈 f |exp(−Hw|z|)|i〉 (3.14)

where the indexw stays for 1-gluon or 2-gluon gluelump Hamiltonians. The latter are expressed
via the same FCsD(z), D1(z) (see [17] and references therein):

Hw = H0[µ]+∆HL[µ,ν ]+∆HCoul[D1]+∆Hstring[D,ν ] (3.15)

where the last termHstring[D,ν ] depends onD(z) via adjoint string tension

σad j =
9
4

∫ ∞

0
d2zD(z) (3.16)

and Hamiltonian depends on einbein fieldsµ andν .
The self-consistent regimes correspond to different asymptotics of the solutions to these equa-

tions. In Coulomb phase of a gauge theory bothH1g, H2g exhibit no mass gap, i.e. largez asymp-
totic of (3.14) is power-like. The functionD(z) vanishes in this phase and W-loop obeys perimeter
law. In the confinement phase realized in Yang-Mills theory at low temperatures a typical large-z
pattern is given by

D(z),D1(z) ∼ exp(−|z|/λi)

i.e. there is a mass gap for bothH1g, H2g.
Confining solutions are characterized by W-loops obeying area law. In other words, Hamilto-

nians expressed in terms of interaction kernels depending onD(z), D1(z) exhibit mass gap if these
kernels are confining. On the other hand the same mass gap plays a role of inverse correlation
length of the vacuum. This should be compared with well known mean-field technique. In our
case the role of mean-field is played by quadratic FC, which develops non-trivial Gaussian term
D(z). Notice that the exponential form of its large distance asymptotics exp(−|z|/λ ) (and not, let’s
say, exp(−z2/λ 2) ) is dictated by spectral expansion of the corresponding Green’s function at large
distances.

Full solution of the above equations is a formidable task not addressed by us here. Instead,
as a necessary prerequisite we check below different asymptotic regimesand demonstrate self-
consistency of the whole picture.
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We begin with small distance region. Thenp part of contribution toD1(z) at small distances
comes from the small distance (small loop) contribution of the Wilson loop with the areaS [3],
W(C) = exp(−π2

8 G2S2).

As a result one obtains

D1(z) =
4C2( f )αs

π
1
z4 +

g2

12
G2. (3.17)

It is remarkable that the sign of thenpcorrection is positive.

At large distances one can use the gluelump Hamiltonian for one-gluon gluelumpfrom [17] to
derive the asymptotics

D1(z) =
2C2( f )αsM

(1)
0 σad j

|z| e−M(1)
0 |z|, |z|M(1)

0 ≫ 1. (3.18)

whereM(1)
0 = (1.2÷1.4) GeV for σ f = 0.18 GeV2 [17, 18].

We now turn to the FCD(z) as was studied in [16]. The relation (3.13) connectsD(z) to the
two-gluon gluelump Green’s function and we shall write it in the form

G(2gl)(z) = G(2gl)
p (z)+G(2gl)

np (z) (3.19)

whereG(2gl)
p (z) contains purely perturbative contributions which are subtracted by higher-order

FCs, whileG(2gl)
np (z) containsnpand possible perturbative -np interference terms. We are interested

in the contribution of the FC〈FF〉 to G(2gl)(z), whenz tends to zero.

One can envisage two types of contributions:

a) In line with the treatment ofD1, Eq. (3.17), one can write the term, representing two-gluon
gluelump as two nearby one-gluon gluelumps which yields forD(z),

∆Da(z) = −g4NcG2

4π2 (3.20)

b) in this case one should consider the diagram given in Fig. 1, which yieldsthe answer (for details
see Appendix of [5]).

∆Db(z) = 2N2
c g4h(z). (3.21)

where at smallz, h(z) ≈ D(λ0)
64π4 log2

(

λ0
√

e
z

)

, λ0 is of the order of correlation lengthλ .

At large distances one use the two-gluon gluelump Hamiltonian as in [17] and find the corre-
sponding spectrum and wave functions, see [17] and appendix 5 of [16] for details. As a result one
obtains in this approximation

D(z) =
g4(N2

c −1)

2
0.1σ2

f e−M(2)
0 |z|, M(2)

0 |z| ≫ 1 (3.22)

whereM(2)
0 is the lowest two-gluon gluelump mass found in [17, 18] to be aboutM(2)

0 = (2.5÷2.6)

GeV.

We shall discuss the resulting properties ofD(x) andD1(x) in the next section.
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4. Discussion of Consistency

We start with the check consistency forD(z). As is shown above,D(z) has the following
behavior at smallz

D(z) ≈−4Ncα2
s (µ(z))G2 +N2

c
α2

s (µ(z))
2π2 D(λ0) log2

(

λ0
√

e
z

)

(4.1)

Sinceαs(µ(z)) ∼ 2π/β0 log(Λz)−1 the first term is subleading atz→ 0 and the last term on the
r.h.s. tends to a constant:

D(0) =
N2

c

2π2D(λ0)

(

2π
β0

)2

(4.2)

Since from (4.2) one can infer, thatD(0) ≈ 0.15D(λ0) for Nc = 3, whereλ0 >∼ λ E. SoD(z) is an
increasing function ofz at smallz, z <∼ λ0, and forz≫ λ one observes exponential falloff. The
qualitative picture illustrating this solution forD(z) is shown in Fig.2.

This pattern may solve qualitatively the contradiction between the values ofD(0) estimated
from the string tensionDσ (0) ≃ σ

πλ 2 ≈ 0.35 GeV4 and the value obtained in naive way from the

gluon condensateDG2(0) = π2

18G2 ≈ (0.007÷ 0.012) GeV4. One can see thatDσ (0) ≈ (30÷
54)DG2(0). This seems to be a reasonable explanation of the mismatch discussed in the intro-
duction.

As was shown in [16], the large distance exponential behavior is selfconsistent, since (as-
suming that it persists for allz, while small z region contributes very little) from the equality
σ = πλ 2Dσ (0), comparing with (3.22) one obtains

0.1·8π2α2
s (N2

c −1)σ2
f =

σ f

πλ 2 (4.3)

where inαs(µ) the scaleµ corresponds roughly to the gluelump average momentum (inverse ra-
dius) µ0 ≈ 1 GeV. Thus (4.3) yieldsαs(µ0) ≈ 0.4 which is in reasonable agreement withαs from
other systems .

We end this section with discussion of three points:
1) D(z) andD1(z) have been obtained here in the leading approximation, when gluelumps of

minimal number of gluons contribute: 2 forD(z) and 1 forD1(z). In the higher orders ofO(αs)

one has an expansion of the type

D(z) = D(2gl)(z)+c1α3
s D(1gl)(z)+c2α3

s D(3gl)(z)+ ...

D1(z) = D(1gl)(z)+c′1α3
s D(2gl)(z)+ ... (4.4)

Hence the asymptotic behavior forD(z) will contain exponent ofM(1)
0 |z| too, but with a small

preexponent coefficient.
2) The behavior ofD(z),D(np)

1 (z) at smallz is defined by NP terms of dimension four, which
are condensateG2 , and the similar term from the expansion of expF , namely,

〈expF〉 = 1+4g2
∫ s

0
dτ

∫ s′

0
dτ ′〈F(u(τ))F(u(τ ′)〉+ ... (4.5)

therefore one does not encounter mixed terms likeO(m2

z2 ).

8
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3) correlation lengthsλ ,λ1 are found from gluelump masses,

λ1 = 1/M(1)
0 , M(1)

0 ≈ 1.2÷1.4 GeV, λ1
∼= 0.2÷0.15 fm. (4.6)

The valueM(1)
0 in (4.6) is taken from the calculations in [17]. The same is true forD, as it is seen

from (3.8), whereG(2gl) corresponds to two-gluon subsystem angular momentumL = 0 indepen-
dently ofµν ,λσ .

Hence one obtains

λ ≡ 1

M(2)
0

; λ ∼= 0.08 fm, M(2)
0 ≈ 2.5 GeV. (4.7)

where the valueM(2)
0 ≈ 2.5 GeV is taken from [17].

5. Conclusions

We have derived, following the method of [13, 14] the expressions for FC D(z), D1(z) in
terms of gluelump Green’s functions. This is done in Gaussian approximation.The latter are
calculated using Hamiltonian wherenp dynamics is given byDnp(z), Dnp

1 (z). In this way one
obtains selfcoupled equations for these functions, which allow two types ofsolutions: 1)Dnp(z) =

0, Dnp
1 (z) = 0, i.e. nonpeffects at all; 2)Dnp(z), Dnp

1 (z) are nonzero and defined by the only scale,
which should be given in QCD, e.g. string tensionσ or ΛQCD. All other quantities are defined
in terms of these basic ones. We have checked consistency of selfcoupled equations at large and
small distances and found that to the orderO(αs) no mixed perturbative-np terms appear. The
functionD1(z) can be represented as a sum of perturbative andnp terms, whileD(z) contains only
npcontributions.

We have found a possible way to explain the discrepancy between the average values of field
strength taken fromG2 and fromσ by showing thatD(z) has a local minimum atz= 0 and grows
at z∼ λ . Small value ofλ and large value of the gluelump massMgl = 1/λ ≈ 2.5 GeV explains
the lattice data forλ ≈ 0.1 Fm. Thus the present paper argues that relevant degrees of freedom
ensuring confinement are gluelumps, described self-consistently in the language of FCs.
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