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The symmetry breaking pattern of QCD features two seemingly disconnected phenomena: the
spontaneous breakdown of the Z(3) center symmetry in the deconfinement transition of pure-
gauge QCD, and the spontaneous breaking of chiral SU(N f )×SU(N f ) symmetry in the limit of
N f massless quark flavours. The dynamical entanglement of these symmetries is displayed in the
framework of a schematic model (the PNJL model) in comparison with results from Lattice QCD.
Extensions to non-zero baryon chemical potential are discussed.
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1. Introduction

Confinement and spontaneous chiral symmetry breaking in QCD are governed by two basic
symmetry principles:

i) The symmetry associated with the center Z(3) of the local SU(3)c color gauge group is
exact in the limit of pure gauge QCD, realized for infinitely heavy quarks. In the high-temperature,
deconfinement phase of QCD this Z(3) symmetry is spontaneously broken, with the Polyakov loop
acting as the order parameter.

ii) Chiral SU(N f )R×SU(N f )L symmetry is an exact global symmetry of QCD with N f mass-
less quark flavors. In the low-temperature (hadronic) phase this symmetry is spontaneously broken
down to the flavor group SU(N f )V (the isospin group for N f = 2 and the “eightfold way" for
N f = 3). As a consequence there exist 2N f + 1 pseudoscalar Nambu-Goldstone bosons and the
QCD vacuum hosts a quark condensate.

Confinement implies spontaneous chiral symmetry breaking, whereas the reverse is not neces-
sarily true. Whether and under which conditions the chiral and deconfinement transitions coincide,
as it appears to be the case in recent lattice QCD computations with almost physical quark masses,
is a fundamental issue.

2. Chiral and deconfinement transitions

Chiral condensate and Polyakov loop. The order parameter of spontaneously broken chiral
symmetry is the quark condensate, 〈q̄q〉. The disappearence of this condensate, by its melting
above a transition temperature Tc, signals the restoration of chiral symmetry in Wigner-Weyl re-
alization. The transition from confinement to deconfinement in QCD is likewise controlled by an
order parameter, the Polyakov loop. A non-vanishing Polyakov loop Φ reflects the spontaneously
broken Z(3) symmetry characteristic of the deconfinement phase. The Polyakov loop vanishes in
the low-temperature, confinement sector of QCD.
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Figure 4: The difference of light and strange quark chiral condensates normalized to its zero temperature

value as defined in Eq. 3.5 (left) and the renormalized Polyakov loop expectation value (right). Shown are

results from simulations on Nτ 4 and 6 lattice obtained with the p4fat3 [21] action as well as preliminary

results for Nτ 8 obtained by the hotQCD Collaboration [8]. The upper axis shows the temperature in units

of the distance r0 extracted from the heavy quark potential. The lower temperature scale in units of MeV

has been obtained from this using r0 0 469 fm [20]. The vertical lines indicate a band of temperatures,

185MeV T 195MeV, which characterizes the transition region in the Nτ 8 calculations.

compared to results obtained with the 1-link, stout smeared staggered fermion action [6] as shown

in Fig. 3(right). The differences between the asqtad and p4fat3 calculations on the one hand and the

1-link, stout smeared calculations on the other hand arise from two sources. For small values of Nτ ,

the quark number susceptibilities calculated with 1-link staggered fermion actions overshoot the

continuum Stefan-Boltzmann result at high temperatures and reflect the strong cut-off dependence

of thermodynamic observables calculated with this action. This is well-known to happen in the

infinite temperature, ideal gas limit and influences the behavior of thermodynamic observables in

the high temperature phase of QCD (see footnote 3 and also Fig. 2 in [9]). On the other hand

the differences also arise from the different choice for the zero temperature observable used to set

the temperature scale. While the temperature scale in the asqtad and p4fat3 calculations has been

obtained from the static quark potential (the distance r0), the kaon decay constant has been used in

calculations with the 1-link, stout smeared action. Of course, this should not make a difference after

proper continuum extrapolations have been carried out. At finite values of the cut-off, however, one

should make an effort to disentangle cut-off effects in thermodynamic observables from cut-off

effects that only arise from a strong lattice spacing dependence in a zero temperature observable

that is used to define a temperature scale. In this respect, the scale parameter r0 extracted from the

heavy quark potential is a safe quantity which is easy to determine; it has been studied in detail and

its weak cut-off dependence is well controlled [21, 24].

Let us now turn our attention to observables sensitive to chiral symmetry restoration which,

of course, is signaled by changes in the chiral condensate (Eq. 3.1). This also is reflected in pro-

nounced peaks in the light quark chiral susceptibility as shown in Fig. 2. As the chiral condensate

receives additive as well as multiplicative renormalization, one should look at appropriate combi-

nations that eliminate the renormalization effects. An appropriate choice is to subtract a fraction of

the strange quark condensate from the light quark condensate and normalize the finite temperature
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Figure 1: Lattice QCD results (N f = 2+1) of chiral condensate (left) und Polyakov loop (right) as functions
of temperature [1]. Different data sets correspond to different number Nτ of lattice points along the Euclidean
time axis.
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There is no principal reason why the deconfinement and chiral transitions should occur at the
same temperature. Nonetheless, recent results of lattice QCD thermodynamics [1] with 2+1 flavors
(at zero baryon chemical potential) indicate just that (see Fig.1), with a common transition tem-
perature Tc ' 190 MeV. A deeper understanding of this observation is of fundamental importance,
also in view of the fact that earlier lattice simulations [2] still found a displacement between chiral
and deconfinement temperatures (although a more detailed assessment of systematic uncertainties
might resolve this apparent contradiction).

One notes that the chiral and deconfinement transitions as shown in Fig.1 are not phase transi-
tions but smooth crossovers, so there is no critical temperature in the strict sense. It is nevertheless
possible to define a transition temperature band around the maximum slope of either the condensate
〈q̄q〉T or the Polyakov loop Φ(T ).

Two limiting cases are of interest in this context. In pure gauge QCD, corresponding to in-
finitely heavy quarks, the deconfinement transition is established - at least in lattice QCD - as a
first order phase transition with a critical temperature of about 270 MeV. In the limit of massless
u and d quarks, on the other hand, the isolated chiral transition appears as a second order phase
transition at a significantly lower critical temperature. This statement is based on calculations us-
ing Nambu - Jona-Lasinio (NJL) type models which incorporate the correct spontaneous chiral
symmetry breaking mechanism but ignore confinement. The step from first or second order phase
transitions to crossovers is understood as a consequence of explicit symmetry breaking. The Z(3)
symmetry is explicitly broken by the mere presence of quarks with non-infinite masses. Chiral
symmetry is explicitly broken by non-zero quark masses. But the challenging question remains
how the chiral and deconfinement transitions get dynamically entangled in just such a way that
they finally occur within a common transition temperature interval.

The PNJL model. Insights concerning this issue can be gained from a model based on a mini-
mal synthesis of the NJL-type spontaneous chiral symmetry breaking mechanism and confinement
implemented through Polyakov loop dynamics. This PNJL model [3, 4] is specified by the follow-
ing action:

S =
∫

β=1/T

0
dτ

∫
V

d3x
[
ψ

†
∂τψ −H (ψ,ψ†,φ)

]
− V

T
U (Φ,T ) . (2.1)

It introduces the Polyakov loop, Φ = N−1
c Tr exp(iφ/T ), with a homogeneous temporal gauge field,

φ = φ3λ3 + φ8λ8 ∈ SU(3), coupled to the quarks. The dynamics of Φ is controlled by a Z(3)
symmetric effective potential U , designed such that it reproduces the equation of state of pure
gauge lattice QCD with its first order phase transition at a critical temperature of 270 MeV. The
field φ acts as a potential on the quarks represented by the flavor doublet (for N f = 2) or triplet
(for N f = 3) fermion field ψ . The Hamiltonian density in the quark sector is H = −iψ†(~α ·~∇ +
γ4 m̂−φ)ψ +V (ψ,ψ†), with the quark mass matrix m̂ and a chiral SU(N f )L×SU(N f )R symmetric
interaction V .

Earlier two-flavor versions of the PNJL model [3, 4, 5] have still used a local four-point in-
teraction of the classic NJL type, requiring a momentum space cutoff to regularize loops. A more
recent version [6] using a non-local interaction does not require an artificial cutoff. It generates
instead a momentum dependent dynamical quark mass, M(p), along with the non-vanishing quark
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Figure 2: PNJL model calculations of chiral and deconfinement transitions [5, 6]. See text for explanations.

condensate. A further extension to three quark flavors includes a U(1)A breaking term implement-
ing the axial anomaly of QCD.

With the input fixed at zero temperature by well-known properties of the pseudoscalar mesons,
the thermodynamics of the PNJL model can then be investigated with focus on the symmetry break-
ing pattern and on the intertwining of chiral dynamics with that of the Polyakov loop. The primary
role of the Polyakov loop and its coupling to the quarks is to supress the thermal distribution func-
tions of color non-singlets, i.e. quarks and diquarks, as the transition temperature Tc is approached
from above. Color singlets, on the other hand, are left to survive below Tc.

A remarkable dynamical entanglement of the chiral and deconfinement transitions is then ob-
served, as demonstrated in Fig.2 (left) for the two-flavor case. In the absence of the Polyakov
loop the quark condensate (left dashed line), taken in the chiral limit, shows the expected 2nd or-
der chiral phase transition, but at a temperature way below and far separated from the 1st order
deconfinement transition controlled by the pure-gauge Polyakov loop effective potential U (right
dashed line). Once the coupling of the Polyakov loop field to the quark density is turned on, the
two transitions move together and end up at a common transition temperature around 0.2 GeV.
The deconfinement transition becomes a crossover (with Z(3) symmetry explicitly broken by the
coupling to the quarks), while the chiral phase transition remains 2nd order until non-zero u and d
quark masses, mu,d ' 4 MeV, induce a crossover transition as well.

The right side of Fig.2 shows the two-flavor PNJL result [6] together with N f = 2 + 1 lattice
data [1]. A direct comparison is clearly not appropriate but the similarity of the crossover transition
patterns is striking, given the simplicity of the model and the fact that these results are derived from
a mean-field approach. Further important steps toward systematic investigations beyond mean field
are presently being pursued.

3. Scenarios at finite baryon density

The quest for the critical point. Undoubtedly a prime challenge in the physics of strong inter-
actions is the exploration of the QCD phase diagram at non-zero baryon density, extending from
normal nuclear matter all the way up to very large quark chemical potentials µ at which color
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superconducting phases are expected to occur. PNJL calculations at finite µ give a pattern of the
chiral order parameter in the (T,µ) plane showing the onset of a first order transition with a critical
point and a first-order transition line extending down to a quark chemical potential µ ∼ 0.3 - 0.4
GeV at T = 0.

Several important questions are being raised in this context. The first one concerns the exis-
tence and location of the critical point. Extrapolations from lattice QCD, either by Taylor expan-
sions around µ = 0 [7] or by analytic continuation from imaginary chemical potential [8], have
so far not reached a consistent conclusion. A second question relates to the sensitivity of the first
order transition line in the phase diagram with respect to the axial U(1)A anomaly in QCD. This
issue has been addressed in Ref.[9] and it was pointed out that, depending on details of the axial
U(1)A breaking interaction, a second critical point might appear such that the low-temperature evo-
lution to high density is again just a smooth crossover, or the first order transition might disappear
altogether and give way to a smooth crossover throughout.

An impression of the explicit dependence of the critical point on the axial anomaly can be ob-
tained using the three-flavor PNJL model with inclusion of a U(1)A breaking Kobayashi-Maskawa-
‘t Hooft determinant interaction and varying the coupling strength K of this interaction [10, 11].
It turns out that the location of the critical point in the phase diagram varies indeed strongly with
K and may even disappear altogether below a certain value of K (see Fig.3). A closely related
question is how the mass of the η ′ meson behaves in a dense baryonic environment.
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Figure 3: Three-flavour PNJL calculation [11]
showing the dependence of the critical point
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η ′ mass in vacuum is reproduced.
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Fig. 5: The ratio of the in-medium chiral condensate to its vacuum value as a function of the
nucleon density ρ for three different values of the pion mass, mπ = (0, 70, 135) MeV. The
dashed line corresponds to the linear density approximation using the empirical central value
σN = 45 MeV [4].

strong contribution from the 3S1 channel [16], the value C ! −0.1 affects the condensate ratio
at nuclear matter saturation density ρ0 = 0.16 fm−3 (corresponding to kf0 = 263 MeV) only at
the 3 permille level (and 4 times as much at 2ρ0).

We can therefore conclude that the short-range NN-dynamics as given by lattice QCD [16]
has a negligible influence on the in-medium chiral condensate 〈q̄q〉(ρ). The deviations from the
linear density approximation are primarily caused by the long- and intermediate range 1π- and
2π-exchange dynamics.

There is some residual dependence on the regularization scale λ left over which is not bal-
anced by the parameters lr3(λ) and γ(λ) (namely from the last term in eq.(11)).2 Varying
λ between 0.6 GeV and 1.2 GeV changes the condensate ratio at ρ0 by 3.5%. Since this is
much smaller than the effect induced by the uncertainty of the empirical nucleon sigma-term
σN = (45±8) MeV [4] we stay with the ”natural” choice of λ = MN = 882 MeV. When inserting
into eq.(19) it reproduces correctly σN = 44.3 MeV for mπ = 135 MeV.

3.2 In-medium condensate

We are now in the position to present and discuss numerical results for the in-medium quark
condensate. Fig. 5 shows the condensate ratio 〈q̄q〉(ρ)/〈0|q̄q|0〉 as a function of the nucleon
density ρ = 2k3

f/3π2 in the region 0 ≤ ρ ≤ 0.36 fm−3 = 2.25ρ0 (i.e. kf ≤ 345 MeV) for three
different values of the pion mass, mπ = (0, 70, 135) MeV. The dashed line in Fig. 5 corresponds
to the linear density approximation using the empirical central value σN = 45 MeV of the
nucleon sigma-term. One observes a very strong and nonlinear dependence of the ”dropping”

2In principle, this scale dependence is balanced by the parameter C(λ) in eq.(27). But this (formal) point of
view introduces the need to fix the scale λ in an estimate of C.

〈q̄q〉ρ
〈q̄q〉0

ρ [fm−3]

Figure 4: Density dependence of the chiral con-
densate in symmetric nuclear matter [13]. Dashed
curve: leading order term using σN = 50 MeV.
Upper curve: full in-medium chiral dynamics re-
sult at three-loop order. Lower curve: chiral limit
with vanishing pion mass.

From the variety of existing model calculations (including those using the PNJL model) one
might draw the presumably premature conclusion that critical phenomena occur already at a density
scale not much higher than that of normal nuclear matter. However, all these models are not capable
of working with the proper degrees of freedom around and below a baryon chemical potential ∼ 1
GeV (corresponding to quark chemical potentials around 0.3 GeV). Approaching this density scale
from below, it is obvious that constraints from what we know about the nuclear matter equation of
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state must be seriously considered.
Constraints from nuclear matter. Chiral effective field theory is not only the low-energy re-

alization of QCD in the meson and single-baryon sectors. It is also a basis for dealing with the
nuclear many-body problem in terms of in-medium chiral perturbation theory [12]. In this ap-
proach, chiral one- und two-pion exchange processes in the nuclear medium are treated explicitly
while unresolved short-distance dynamics is encoded in contact terms. Present calculations are
performed up to three-loop order in the energy density. Three-body interactions emerge and play
a significant role in this framework. The pion mass mπ , the nuclear Fermi momentum pF and the
mass splitting between nucleon and ∆(1232) are all comparable scales. Therefore the relevant, ac-
tive degrees of freedom are pions, nucleons and ∆ isobars. Intermediate range two-pion exchange
interactions produce van der Waals - like forces involving the large spin-isospin polarizablity of
the individual nucleons, and the Pauli principle acts on intermediate nucleon states in two-pion
exchange processes.

This scenario leads to a realistic nuclear matter equation of state [12] with a liquid-gas first
order phase transition and a critical temperature of about 15 MeV, close to the range of empirical
values extracted for this quantity. This is so far the only well established part of the phase diagram
of strongly interacting matter at finite density and low temperature. The truncation in the chiral
expansion of the pressure in powers of the Fermi momentum, pF , implies that these calculations
can be trusted up to about twice the density of normal nuclear matter, i.e. for pF . 0.3 GeV
<< 4π fπ with fπ = 0.09 GeV the pion decay constant.

In a nuclear equation of state based on chiral dynamics the pion mass enters explicitly (or,
equivalently, the quark mass according to the Gell-Mann - Oakes - Renner relation,
m2

π f 2
π =−mq〈ψ̄ψ〉). Equiped with such an equation of state one can now ask the following ques-

tion: how does the chiral condensate extrapolate to baryon densities exceeding those of normal
nuclear matter? In-medium chiral effective field theory gives the following answer:

〈ψ̄ψ〉ρ

〈ψ̄ψ〉0
= 1 − ρ

f 2
π

σN

m2
π

(
1− 3 p2

F

10M2
N

+ . . .

)
+

ρ

f 2
π

∂

∂m2
π

(
Eint(pF)

A

)
. (3.1)

The second term on the r.h.s., with its leading linear dependence on density, is the contribution
from a free Fermi gas of nucleons, with the pion-nucleon sigma term σN ' 0.05 GeV and non-
static corrections. The third term involves the pion mass dependence of the interaction energy per
nucleon, Eint/A. This term features prominently the two-pion exchange interaction in the nuclear
medium including Pauli principle corrections, and also three-nucleon forces based on two-pion
exchange.

The dashed-dotted curve in Fig.4 shows the pronounced leading linear reduction in the mag-
nitude of the chiral condensate with increasing density. This holds in the absence of correlations
between the nucleons. Up to about the density of normal nuclear matter, this term dominates,
whereas the interaction part tends to delay the tendency towards chiral restoration when the baryon
density is further increased. This behaviour is sensitive to the actual value of the pion mass. In
the chiral limit, mπ → 0, with stronger attraction in the NN force at intermediate ranges, the trend
is reversed and the rapidly dropping condensate would now lead to the restoration of chiral sym-
metry at relatively low density: nuclear physics would look completely different if the pion were
an exactly massless Nambu-Goldstone boson. The influence of explicit chiral symmetry breaking
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through the small but non-zero u and d quark masses on qualitative properties of nuclear matter is
quite remarkable.

These results demonstrate that known properties of a realistic nuclear equation of state must
be considered as important constraints for extrapolations to higher densities, at least at low temper-
atures. PNJL type models work with quarks as independent quasiparticles. They do not account
for those parts of the QCD phase diagram that are governed by color singlet baryons as relevant
degrees of freedom. The recent very interesting discussion [14] of a quarkyonic sector in the phase
diagram at moderate quark chemical potentials should not miss these constraints.
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