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1. Introduction

The spontaneous chiral symmetry breaking plays a centialimathe low-energy Quantum
Chromodynamics (QCD). It is understood that this phenoniettze source of the hadron masses
of order Agcp, the QCD scale. An important exception is the pion, whichearty massless,
as it is a pseudo-Nambu-Goldstone boson. The pion dynamie®li described by an effective
theory, known as chiral perturbation theory (ChPT) [1], ethis constructed based on the pattern
of spontaneous symmetry breaking.

Parameters in ChPT are not known a priori. In phenomendabgitalysis, they are determined
with experimental data as inputs, but it is more desirabilea§ can be calculated starting from the
first-principles of QCD. This sets a challenge for lattice[R@t the leading order, there are two
parameters: the chiral condensatand pion decay constaftin the chiral limit. Calculation of
these parameters has long been one of the main issuesde @ED. In particular, the calculation
of X has been notoriously difficult, as it survives only in therthedynamical limit,i.e. the limit
of massless sea quarks after taking infinite volume limite @atermination of other parameters in
ChPT, such as the low energy constant at the next-to-leqtilb@) order can be done only after
the leading order parameters are determined precisely.

Lattice QCD has become the most powerful tool for non-pbetive calculation of strong
interaction of hadrons, with the help of the rapid speed-tipomputers. In fact, lattice QCD
has even played a leading role in the development of higheenaputers. Still, the mechanism
of chiral symmetry breaking remained not entirely cleailustently, since the chiral symmetry
itself was violated in the simulations with the conventiotatice fermion formulations. It is
theoretically known that the use of Neuberger's overlamDioperator [2] is a solution to this
problem as it realizes exact chiral symmetry at finite latipacings [3, 4]. Because of its numerical
cost, however, it was only recently that the large-scaleukition of dynamical overlap fermions
became feasible.

The numerical cost of the overlap-Dirac operator is highmpared to other non-chiral or
non-flavor-symmetric lattice fermions, as it involves apraximation of the sign function of the
hermitian Wilson-Dirac operator. The cost increases evererwhen the Atiyah-Singer index of
the Dirac operator, which corresponds to the topologicalrgd of the background gauge field,
changes its value by-1. This is because the molecular dynamics steps have toveneol extra
procedure [5] in order to catch a sudden jump of the fermiderdd@nant on the topology bound-
ary. This additional procedure, known as the reflectiordiction, needs numerical cost potentially
proportional to the lattice volume squared.

Recently, the JLQCD and TWQCD collaborations have perforiaege-scale simulations of
2- and 2+1-flavor QCD employing the overlap fermions for searks [6]. We avoid the extra
numerical cost due to the change of topology by a modificatibtine lattice action to suppress
the topology tunneling as proposed in [7, 8, 9]. Our lattitewations are confined in a fixed
topological sector, so that an expectation value of anyaipecould be deviated from the value in
the true QCD vacuum. This effect can be understood as a fioitene effect and estimated in a
theoretically clean manner as discussed below. It is wartlted that the simulation parameters
contain those in the-regime on & ~ 2 fm lattice, as well as in the conventioraregime [10, 11,
12]. This enables us to study the chiral dynamics in an dntdiéferent set-up and to determine
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the low-energy constants at the point very close to the Iclind.

With exact chiral symmetry, the study of spontaneous ckiymimetry breaking is theoretically
clean, but it still requires a good control of the systematiects due to the finite volume [13]. For
such infra-red effects, the lightest particle, which is fhen, gives a dominant contribution. It
should therefore be possible to use analytic calculatiattiwChPT in order to predict the finite
volume corrections for a quantity of interest. Then, théidatresults can be directly fitted with
these finite-volume formulae of ChPT to determine the reiel@v-energy constants. The effect
of fixed topology can also be understood as one of such iefiiaffects since thglobal topological
charge should not affect the physics at a local sub-volurmenitie entire volum¥ is large enough
[14, 15]. In a calculation of the topological susceptilil[l6, 17, 18, 19] through topological
charge density correlator, we can actually see that lopaltgical excitations are active even when
the global topological charge is kept fixed. Its result issistent with an expectation of ChPT,
which implies that the ChPT-based analysis is valid for tfieces due to the fixed topological
charge[20, 21].

There have been a number of analytical works that aimed dtatlimg the infrared effects
occurring in the lattice simulations. A well-known exampddhe finite volume correction due the
pions wrapping around the lattice [22, 23]. Extended worksreecessary when the system enters
the so-callece-regime [24, 25] by reducing the sea quark mass to the wcifithe chiral limit.

In this regime, the vacuum fluctuation of the pion field playgpacial role and a non-perturbative
approach is needed in ChPT. Namely, the zero-momentum paarerhas to be integrated over
the group manifold of the chiral symmetry in contrast to tlhee of the conventiongl-regime
where a certain vacuum is (randomly) chosen by the spontsnggmmetry breaking. Recently,
the partition functions with fully non-degenerate flavo$] were calculated, so that even the
(partially) quenched analysis [27] of the meson correfaisrpossible. To study more realistic
set-up,i.e. including the strange quark in theregime, several hybrid method to treat both the
and p-regimes have been proposed [28, 29]. The effect of fixedogyds worked out in [21]. We
also note that the effects of explicit violation of chirahsyetry due to the Wilson term are also
discussed [30, 31], which is needed to study the Wilson fennsimulations near the chiral limit
[32, 33].

In this talk, the dynamical overlap fermion simulation by th.QCD and TWQCD collab-
orations is reviewed in Section 2. In Section 3, we discussfitiite size scaling as well as the
global topological effects within ChPT. As an example, agent result for chiral condensate [34]
is presented in Section 4. Summary and conclusion are giv8edtion 5.

2. Dynamical overlap fermion at fixed topology
We employ the overlap-Dirac operator [2]

m m
D(m) = (mo+3 ) + (Mo~ 3 ) yesgrithu(—mo)], (2.1)
for the quark action. Heren denotes the quark mass ahkly = ysDw(—mp) is the Hermitian
Wilson-Dirac operator with a large negative massy. We takemy = 1.6 throughout our simu-
lations. (Here and in the following the parameters are gimethe lattice unit.) In the chiral limit
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m — 0, the overlap-Dirac operator (2.1) satisfies the Ginsp#ilgon relation [3]
1
D(0)y + y5D(0) = ED(O);@D(O). (2.2)

With this relation, the fermion action constructed froml{2has exact chiral symmetry under a
modified chiral transformation [4]. Moreover, it is knowratithe overlap-Dirac operator has an
index which corresponds to the topological charge in theicoam limit [35].

In the numerical implementation of the overlap-Dirac opmrd2.1), the profile of near-zero
modes of the kernel operatéky (—mp) largely affects the numerical cost of the overlap fermion
(The presence of such near-zero modes is also a problemefdodhlity property of the overlap
operator [36].). For the approximation of the sign function(2.1), the number of operations
of the Wilson-Dirac operator needed to keep a certain goecisionotonically increases as the
condition numbeRJ? /A" grows, where\ >’ ™" denotes the maximum/minimum eigenvalue
of the operatofHy (—mp)|. Moreover, since the overlap-Dirac operator is not unigdetermined
whenHw(—mp) has a zero eigenvalue, the overlap fermion determinant décantinuity. This
discontinuity of the determinant prevents smooth evolutid the molecular dynamics steps and
requires a special treatment, known as the reflectionfédra procedure [5]. It needs an extra
numerical cost, which is potentially proportional to theite volume squared.

At currently available lattice spacings with conventiogaluge actions, the spectral density
pw(Aw) of the operatoHy (—mp) is non-zero at zero eigenvalugy = 0 [37]. Note that the
appearance gby(Aw = 0) is, however, a lattice artifact due to the so-called didioocs: local
lumps of gauge configurations [38], which disappears in trgiouum limit.

To avoid the problem of the large extra numerical cost ant@pbtentially ill-defined overlap
operator, we introduce additional Wilson fermions and tedsmass bosonic spinors to generate a
weight

defHw (—mo)?]
defHw(—mg)2+ p?)’
in the functional integrals [7, 8, 9]. Both of fermions andogts are unphysical as their masses
are of order of the lattice cutoff, and thus do not affect lemergy physics. The numerator sup-
presses the appearance of near-zero modes, while the dextoniancels unwanted effects from
higher modes. The “twisted-mass” paramgtecontrols the value below which the eigenmodes
are suppressed. In our numerical studies, wegiseD.2.

As Fig. 1 shows, the near-zero modes$#f(—myp) are actually washed out whenis non-zero
in quenched QCD simulations. This leads to a large reductidine numerical cost to approximate
the sign function in (2.1) [9]. We also find that the molecudgnamics evolution is smooth in the
hybrid Monte Carlo updates and we can turn off the refleatésrection procedure.

The presence of zero-mode lgfy (—ny) is related to a topology change: the Atiyah-Singer
index or the topological charge of gauge fields changes Iteevahen an eigenvaluky (—mp)
crosses zero. The conditidty (—mp) = 0, thus, forms a topology boundary on the gauge con-
figuration space. With the lattice action including (2.3)erefore, the topological charge never
changes during the molecular dynamics steps of the Hybridt®&arlo (HMC) simulations. In
this work, the simulations are mainly performed in the #&itopological secto@ = 0. In order to
check the topological charge dependence, we also carryndapéendent simulations &= +1,

(2.3)
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Figure 1: Histogram of the spectral density By (—my). Data for three values gf (1 = 0.0, 0.2, and 0.4)
are shown in the plot. Note that= 0 corresponds to the case where the extra fermion deterbigtamnned
off.

—2 and—4 at some parameter choices. The configuration space of afipeel topology is simply
connected in the continuum limit, hence it is natural to assuhat the ergodicity of the Monte
Carlo simulation is satisfied within in a given topologicat®or.

In the Monte Carlo simulations, we choose 5-6 different fsoaf the up and down quark mass
My in a range M02 < myg < 0.100. For theN; = 2+ 1 runs, two values of the strange quark
mass:ms = 0.080 and 0.100 are taken. For the gauge part, we use the Iwgmade action [39] at
B = 2.3 (except for the case afy,g = 0.002 in theN; = 2 run wherg3 = 2.35 is chosen). The lattice
volumes are/ = L3T = 16° x 32 (N; = 2) andV = L3T = 16° x 48 (N; = 24 1). For the latter,
we also carry out a run on\a= L3T = 243 x 48 lattice atm,q = 0.025 andms = 0.080, in order
to check the finite volume effect. The lattice scades = 1.667 GeV (; = 2) anda™! = 1.833
GeV (N; = 2+ 1) are determined from the heavy quark potential, using 0.49 fm as an input
[40]. The lattice size is then estimatedlas- 1.9 fm for Ny = 2, andL ~ 1.7 fm for Ny =2+ 1
runs. Note that for the lightest quark masg = 0.002~ 3 MeV, the system of pions is inside the
g-regime.

Since our gauge configurations are generated in a fixed tgigalosector, expectation value
of any operator could be different from those in the QCD vacuilso, our lattice size is- 2 fm
and considerable finite volume effects, especially ingtiegime, are expected. As our lattice size
is, however, still kept larger than the inverse of QCD scake, AgcplL > 1, both effects can be
considered as a part of infra-red physics for which pionsrarst responsible. We, therefore, expect
that chiral perturbation theory (ChPT) can correct thestesyatic effects. In the next section, we
discuss how to evaluate physical observables in a fixed agpal sector within ChPT at finite
V. Non-perturbative treatment of the zero momentum mode edisas the Fourier transform with
respect to the vacuum anghe play a key role. Using their analytic formulae, we can contree
lattice QCD results on a finite lattice to the values in the @CD vacuum in the infinite space-time
volume.
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3. Finite V and fixed Q effects within ChPT

In this section, we first discuss how to evaluate the effedixaig topology. A general ar-
gument leads to a consequence that the dependence on thétglmiogical charge only appears
with a suppression factor/¥. Namely, it is a part of the finite volume effects. Recent msid
of the finite volume scaling within ChPT are then reviewed. c®mwe assume that the heavier
hadrons, such as rho mesons, baryeinsare all decoupled from the theory at the scalebﬂ.’(“,
only pions describe the difference of the finite volume sysfeom the infinite volume one. We
discuss, in particular, a non-perturbative approach tgirate over the chiral field’s vacuum, which
is necessary in the-regime.

3.1 Topology as an infra-red physics

Let us start our discussion with an intuitively noticeabiffedence between the trivial topo-
logical sector Q = 0) and the first non-trivial one = 1). In the weak coupling limi§ < 1, it is
well-known that a self-dual solution, the so-called ongtamton solution, dominates the configura-
tion space of th€ = 1 sector and its relative weight is given byexp(—81/g?). For larger value
of Q, the weight is expected to be exp(—87%|Q|/g?). As the coupling constant becomes strong,
g~ 1, more complicated configurations with many pairs of intstas and anti-instantons are more
favored, since the entropy gives more impact on the freeggrtbian the action density. Suppose
that the number of such pairs generated in a typical confligurés Q4. The trivial sectoQ =0
then haxQae instantons an@,e anti-instantons while in th® = 1 sector(Qae + 1) instantons
andQqe instantons are there. A,e grows, the difference between the global topological obarg
Q = 0 andQ = 1 would become less important.

If the theory has a mass gy (it is natural to assumégap, = Agcp for the pure gauge
theory whileAg,p is the pion massn; for QCD), the typical size of an instanton or anti-instanton
should be given by Mg, and their density is estimated asAZ,,. The value 0fQaye discussed

-
above is then estimated by/\gapv and one can easily see ho?/vpthe difference betvwgen0 and
Q =1 (or higher) disappears as1/V whenV is sent to infinity or equivalentlQae — «. The
effect of the global topological charge thus should be wtded as a finite volume effect.
Brower et al. [14] and Aoki et al. [15] gave a more theoret@madl solid formulation for the
effect of the global topological charge. The partition flioie of the theory at a fixed topological

chargeQ is obtained from those at th&vacua by a Fourier transformation
Zo = /de d997(6) = /de d%exp(—f(O)V), (3.1)

where f(6) denotes a free-energy density of thevacuum. When the vacuum andleis small,
f(68) can be expanded i@ as [41]

£(6) = L2t92+c494+0696+..., (3.2)
where a constant term is omitted. Hexecorresponds to the topological susceptibility. Assuming
that all the constantg;, ¢4, Cs €tc. are of the order of (/\gap)4 and the volume is large enough to
satisfyLAgap > 1, the aboved integral can be evaluated by a saddle-point expansion as

1 Q? C4
Zo = - 1- 3.3
QT 2V exp( 2xtV>[ BV ] (3:3)
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Figure 2: The eta-prime correlator (circles) = 0.002 andQ = 0 obtained in the two-flavor QCD simu-
lation. A negative constant contribution is seen. The gias are its connected and disconnected diagram
parts.

which clearly shows that the global topological charge delpace disappears in the linvt— co.
It is also important to notice that the distribution of thelgal topological charge converges to the
Gaussian distribution as the volume increases, which agwed with the intuitive picture above
that only the entropy given by the distribution of instarg@md anti-instantons becomes important
in the thermodynamical limit.

Under those minimal assumptions on the vacuum free enengycan prove tha;, c4 €etc.
can be extracted from lattice QCD simulations at a fixed togichl charge [15]. For instancg;
appears as a constant mode in the two-point correlator ifiaher singlet channel

(') = — 5 + OAN?) + o ), (3.4)
for a large separatiopx—y|. The excitation in this channel corresponds torfheneson whose non-
zero mass is given hyy,.. The constant correlation has a negative sign when the igimbalogical
chargeQ is zero, because at long distances there is more chance todpusitely charged local
topological excitations when the sum is constrained to.zero

In the numerical simulations [16, 17, 18, 19] the presendhisfconstant mode is confirmed
as Fig. 2 shows. Moreover, the extracted valueg @ia above formula are found to agree with the
ChPT prediction [25]

2
St a/me
as seen in Fig. 3. The value &fextracted from this analysis is consistent with a nomindlleva
¥ ~ (250 MeVY. Chiral fit including the next-to-leading chiral correat®[20, 21] is underway.

There are two remarkable conclusions that may be drawn fhaset lattice data. First, lo-
cal fluctuation of topology exists even when the global togaal charge is fixed in Monte Carlo
simulations. There was some doubt about the ergodicity @Mbnte Carlo simulation with the

Xt = (3.5)
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Figure 3: x; extracted from thg’ meson correlators. A good agreement with ChPT predictismigl(lines)
is seen both in thdl; = 2 andNs = 2+ 1 lattice data.

topology fixing term, but as far as the numerical data impBrehis no evidence of the problem.
Second, the topological charge actually feels the presehdgnamical fermions and thg van-
ishes in the chiral limit as expected from ChPT. Topology [m# of the infrared physics that can
be well described by the pion physics.

3.2 FiniteV and fixed Q within ChPT
The Lagrangian of ChPT is given by [1]

2 . .
2 = T Ta0 (00,0 () ST e MU LU TN A o (36)

where the chiral field) (x) is an element 08J (N¢) group. Here the pion decay constant and the
chiral condensate are denotedmwandZ, respectively. The vacuum angleis given as a phase in
front of the mass matrix# = diag(my, mq, Mg, ---).

In the conventionalp-expansion, we treat the exponentWfx) as the Nambu-Goldstone
modes (here we denote &6x)), or pions, and expand the chiral field as

U(x) = exp(iﬁé(x)> :1+i§5(x)—F—1252(x)+..., (3.7)
With the counting rule
M~ p27 d[l ~ P, 1/L71/T ~ P, E(X) ~ P, (38)

physical amplitudes are systematically expanded in tefnpé.o
In the p-regime, the finite volume effect appears in the pion propagsince the momentum
space is discretized [22]. Pion correlator reads

aror eb B dp(x-y) 39
(&%(x)¢& (Y)>—5ab%p27m%7 (3.9)
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wherea(b) denotes tha(b)-th generator 08J (N¢) and the summation is taken over the 4-momentum
p=2m(n/T,ny/L,ny/L,n;/L), with integern,’s. As a consequence, all the correlators become
periodic. Even at a contact poirt=y, there exists a finite volume correction

a _ m; Mg
(& (X)Eb(x» = Oab (W InIJwa —|—gl(m%)> ) (3.10)
M
gl(Mz) = ;OWKKMMD’ (3.11)

which is understood as an effect of pion wrapping arounddtteé. HereK;(x) is the modified
Bessel function and the summation is taken over the 4-vegter n,L, with Lj =L fori=1,2,3
andLs =T, except fora, = (0,0,0,0). Note that the subtraction of the ultraviolet divergence is
done at a scalglg,,, Which can be made in exactly the same way as in the infinitermel In
a similar perturbative manner, the effect of global topgligyrecently calculated to the next-to-
leading order [21].

In the e-regime, the abov@-expansion (3.8) fails because the zero-momentum modei-cont
bution induces an unphysical infrared divergence, whichtb#e circumvented by exactly treating
the vacuum fluctuation of the chiral field. Namely, using aapagterization

U(x) = wap(i@) , (3.12)

whereUp € U (N¢) and&’ satisfies

/ d*x &'(x) = 0, (3.13)

one can explicitly factorize the zero momentum partygsSinceUp has no dependence anthe
group integral can be non-perturbatively performed asércticulation of random matrix models.
The non-zero momentum modé&S&s are perturbatively treated as an expansiosqaccording to
the counting rule

M~Er Fy~e, 1LLYT ~e E(X)~e. (3.14)

This g-expansion [24, 25] is useful when the quark mass is so shwdlthe pion correlation length
exceeds the spatial extent;L < 1.

The zero momentum componddg can be explicitly integrated out and written in terms of
analytic functions. This fact opens an interesting thécaepportunities. In particular, at the
leading order of thee-expansion, the system is proven to be equivalent to the dtandatrix
Theory [42, 43, 44]. In the context of the QCD study, this jaeg a new method to determine the
chiral condensate by matching the low-lying eigenvalueheDirac operator. At an early stage, a
simple setup with all degenerate quark masses were stullgelditice QCD is developed to reach
the simulations near the chiral limit, calculations in a en@alistic setup has become relevant, and
partially quenched calculations of various quantitiesehlbgen carried out [27, 45]. With strange
quark mass kept at its physical value, the finite volume syssenot purely in thee-regime even
when the up and down quark masses are sent close to the ahitablecause the kaon amgare
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heavy and do not satisfyk L < 1. For this mixed-regime, a hybrid method is proposed [28] an
even extended to the case of heavy-light mesons [46]. Maently, a theoretical framework in
which theg- and p-regimes are treated in a unified manner is proposed [29] adhwdhetails are
described in the next section.

As a final remark of this section, we note the role of topolabicharge in thes-regime.
Intuitively, the global topological charge become relevarthe dynamics of the system when the
volume is small. This can be explicitly studied within ChAHRe 8 integral can be absorbed in the
zero-mode integrals

d6 -
av du é"Q:/ dUq(detUo)2, 3.15
/ 27T./SJ(Nf) 0 U(Nf) of 0 ( )

whereUy is integrated over W) manifold. The effect of the topological charge enters tigio
a factor (detUp)®?. For instance, the spectral density of low-lying Dirac eig@des is largely
affected byQ, of which dependence can be used to test the validity of ChiPdgdition to the
quark mass dependence.

4. Determination of the chiral condensate

4.1 Analytic results beyond the leading order

The chiral condensate is related to the Dirac eigenvalusiyem(A ) atA = 0 in the thermo-
dynamical limit [47] asp(0) = Z/m. This relation can be easily extended to non-zero eigeasalu
by an analytical continuation of the valence magdo a pure imaginary value\

p(A) = ~REGH)lm i @1)

Here,q.qy is the scalar density operator made of the valence quark fldlé general formula is
valid for both p- ande-regimes.

In the p-regime, using the partial quenching technique for the imay valence quark mass,
Osbornet al. [48] (see also [49]) found that the Dirac spectrum contailogarithmic dependence
on A. This calculation is done in the infinite volume limit withgnerate quark masses.

For small eigenvalues, the effect of finite volume becomgsomant. The ChPT calculation
is simplified if one consider the-expansion and taking its leading order contribution. Tiegral
over the zero momentum pion mode can be done analyticaldytrespectral function has been
obtained as a function &¢, sea quark masses, and topological ch&d8g0, 51, 52]. Except for
the exact zero-modes associated vi@ththere is a finite gap from zero (of ordef2V, which is
called the microscopic region) in the Dirac operator speotr These analytic ChPT results can
be used to extrac by comparing with the lattice data in theeregime [10, 13]. But, since the
formulae are obtained at the leading order, the valug tifus obtained is a subject of the NLO
corrections of the-expansion. Furthermore, it requires that the system isdg-regime, which is
numerically demanding. For common lattice QCD configuregiproduced in g-regime set-up,
these analytical results cannot be applied.

Here we introduce a new method of the chiral expansion [293.Based on th@-expansion,
but includes the pion zero-mode integral explicitly so tadtansition to thes-regime is smooth.

10
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In this scheme, one may predict the eigenvalue spectruneimibroscopic region for the system
in the p-regime. With the so-called replica trick, the calculatisrextended to the case of non-
degenerate quarks of arbitrary number of flavors.

At a fixed topological charg®, we obtain [29]

PQ(A) = ZefiPG(A ZefV, {MeeaZeV }) + PP(A, {Meea}), (4.2)

whereA denotes the Dirac eigenvalu@msaZeV } = {mZeqV, mpZeqV,---} is a set of the sea
quark masses normalized by effective chiral condensat&cs (the definition is given below) and
V. The first term on the right hand side of (4.2) contains theinribe leading-ordeg-expansion

P&(C, {Hsea} = {11, k2 }), which is rescaled so that the physical scais factored out. This is
a known function given by determinants of the Bessel fumstib2]:

Z| det#

0§ = 4.3
PE(L {Ham}) ¥ o de (4.3)
where arN¢ x N¢ matrix < and an(Ny + 2) x (N 4 2) matrix 4 are defined by
i = W Hguj (), (4.4)
Py = 74 j-2(0), %oy = orj-1(0),
Bij = (—ti-2) Morj1(ki2) (1#1,2). (4.5)

Here, the overall sign 8, = +1 for theN; = 2 and 3 cases.
The second term in (4.2) is a logarithmic NLO correction aggk seen in the conventional
p-expansion. Defining/3 = (m +m;)%/F?, the function is given by

Ne . _ _
PPN (mea)) = 7 oREY (BMR) ~ B(MF/2)) ~(GIME) ~ GO} (46)

where
3 [B(M?) + (M2 — ME)) 9220, M?)| (Nf =2),
_ 2(M2,—M2, -M2)2\ ~
G(MZ) _ %[ 9((Mug MZ)) A(MZ) (l—l— (( ud )) ) (M )
M2-M2,)(M2—M2,
4 (MugxiMz) ) 9o 5 (M? )] (Nt = 2+1),
4.7)
_ 2 2 M2 )
AM?) = — In— + g1 (M9). 4.
(M%) 16n2”u§m+91( ) (4.8)

Here M2, = 2mZ/F? = 2my3/F2, M3 = 2ms3 /F2 and M3 = (MZ; + 2M%)/3. The function
01(M?) = g1(M?) — 1/M?V denotes the well-known finite vqume correction from nonez@odes
[22] (see also (3.10)). The scal€, (=770 MeV in this work) is a subtraction scale. Note that
pP(A,{m«a} is insensitive to the topological charge.

Theeffective condensate in (4.2) is also expressed in ternts(bf2) andG(M?2) as

Nt
Zeﬁ:Z[l——<ZAM ¢/2) — 16L2,Z|v|$f>

11
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Figure 4: The first termzeﬁﬁé (solid-thin curve), the second terp? (dashed) and the total contribution
(solid-thick) of the spectral density (4.2) are shown. Taeves are multiplied byr. We use> = [240MeV/,
F =94 MeV,Lg = —0.0001,L =T/3=1.9 fm, myg = 20 MeV andms = 120 MeV as inputs.

This depends on the sea quark masses, voMrmaedLg of which value is renormalized (@, =
770 MeV in this work).

For an illustration, we draw curves given by the formula 4r2Fig. 4. The contributions
from the first termEefpg (solid-thin curve), the second terp? (dashed) and the total contribution
pa(A) (solid-thick) are shown separately. We use typical parars&t= [240MeV|3, F = 94 MeV,

Lg = —0.0001,L =T /2 = 1.9 fm,myg = 20 MeV andms = 120 MeV as inputs. One can see that
the second term gives a negative contribution and showshiisant curvature in the lower end of
the spectrum. This is the effect of the chiral logarithm. #ads quark mass, the formula starts to
deviate from the leading order expression in ¢hexpansion already @t ~ 5 MeV.

4.2 A numerical analysis

Our simulation details and parameters have been alreademel in Section. 2. For the
study of the Dirac spectrum, 80 lowest pairs of eigenvaldéseoverlap-Dirac operatdd(0) are
calculated at every 5-10 trajectories. We employ the irtplicestarted Lanczos algorithm for
the chirally projected operatét. D(0) P, , whereP, = (1+ y)/2. From its eigenvalue R&", the
pair of eigenvalued ® (and its complex conjugate) @f(0) is extracted through the relatidh—
A% /mg|? = 1, that forms a circle on a complex plane. For the comparisitmtive effective theory,
the lattice eigenvalua® is projected onto the imaginary axis As= ImA%/(1— ReA®/(2my)).
Note that the real part of® is negligible (within 1%) for the low-lying modes.

When we maitch the lattice data for the spectral density Wighanalytic calculation (4.2),
two parameters are to be determined at each set of the quatema.; andF. In the second
NLO term of (4.2), the difference betweénrg andZ is a higher order effect. We therefore take
two reference values of to give inputs to determinEe andF. The reference points are chosen
such that they have maximum sensitivity to the parametetiseérconvergence range of the chiral
expansion:A = 0.004 (~ 7 MeV) and 0.017 £ 30 MeV) except for the case wittm,y = 0.002

12
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andQ = 1, for which we choos@d = 0.01 and 0.02 (because of its weaker sensitivity to the NLO
effects). At these two reference points, we compare the modeber below a given value of
[33], with an integrated formula of ChPT (4.2)

A
No(A) = V / dA’po(A"), (4.10)

0
and determin&g; andF. As Giusti and Luscher [33] studied, it is also useful to defimquantity

TNQ(A)
AV

to see the NLO effects, or the chiral logarithmic effect&toWe test the both oy =2+ 1 and
N = 2 ChPT formulae. For the latter case, the strange quark isress$to be decoupled from the
theory.

Figures 5 and 6 show the lattice data for the spectral defugityer panel), its integral (middle)
andzg“’de()\) defined by (4.11) at two different sea quark masses: one ip-tiegime (= 0.015,
Fig. 5) and the other in the-regime (n=0.002, Fig. 6). The analytic formula is also plotted with
two parameters fixed at two reference points of the mode nurithe leading-order contribution
is given by dotted curves while the full result is shown byicolrves.

In the p-regime result (Fig. 5), the effect of the NLO term in theexpansion is clearly seen
as a deviation from the leading-order denﬁgyff)g (dotted curve) in the histogram. The deviation
starting already aroundl ~ 0.005 is also clear in the mode numb¥g(A) andzg”de()\). On the
other hand, the NLO formula (solid curve) describes théckttata very nicely up td ~ mg/2.

The convergence of the chiral expansion is better fothegime data (Fig. 6), but the differ-
ence between LO and NLO still exists. We also observe that ilsea wider gap near = 0, which
is expected because the value of the sea quark mas$§.002 is similar to the lowest eigenvalue,
so that the suppression due to the fermionic determifigA® + nm?) works strongly.

One of the significant consequences of the ChPT formula {gtBat the spectral function for
different topological charg® and volume/ should be described by the same set of the parameters,
i.e. Zef andF. This provides a highly non-trivial cross-check of the foiten For this purpose we
produced data at non-zero topological cha@e- 1. The results are shown in Fig. 7. Here the
curves of the NLO ChPT is drawn with inputs from tige= 0 data and there is no further free
parameter to adjust. The good agreement belaw0.03 gives further confidence on the analysis.

A similar check can be done with the lattice data obtainethfeolarger volume lattice 24«
48, for which the data are shown in Fig. 8. The comparison i anbre tricky for different
volumes, because the definition Dfy (4.9) depends o. Namely the functiorﬂ(Mz) contains
g1(M?), which represents the finite volume effect. It is possibledavert the value oEg for
different volumes. If we convert the result lat= 24, > = 0.003067) to the one on & = 16
lattice, it becomes 0.00341(18), which may be comparedthétindependent calculationlatE 16
at the same sea quark mamss= 0.025, which is 0.0333(18). Therefore, the finite volume sali
is confirmed at least on two different volumes, whose difiegsis a factor of 3.

The curves in Figures 5-8 are drawn using Mye= 2+ 1 ChPT results, but we found the
difference fromN; = 2 ChPT formula is hardly visible in the scale of this plot, atniconfirms
decoupling of the strange quark from the low energy theory.

Z5*()

(4.11)
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Figure 5: The spectral densityrpg(A) (top), the mode numbeXg(A) (center) andzg“’de()\) (bottom)
of the Dirac operator at,g = 0.015,ms = 0.080 andQ = 0. The lattice result (histogram (top) or solid
symbols (center and bottom)) is compared with the ChPT ftardtawn by solid curves. For comparison,
the prediction of the leading-expansion (dashed curves) is also shown.

14



Exploring chiral dynamicswith overlap fermions

Hidenori Fukaya

0.005 ——
lattice mmmmmm
ChPT LO weeeeeess
0.004 ChPT NLO =——
—_ 0.003 | |
S
g
0.002 |
0.001
0 o P il il
0 0.01 0.02 0.03 0.04 0.05 0.06
A
10
8 t1.5 |
~~ 6 I T -~
< | ol T
% e
al 0 001 002 .
2r = .
lattice ———
ChPT LO e
0 ‘ ‘ ChPT NLO —— |
0 0.01 0.02 0.03 0.04 0.05 0.06
A
0.0035
0.003 | 1
0.00251 |
%6 0.002 |
go' 0.0015
W : I
0.001
| lattice —— |
0.0005 ChPT LO v
0 ‘ ‘ . ChPTNLO —
0 0.01 002 003 004 0.05 0.06
A

Figure 6: Same as Fig. 5, but at,y = 0.002. The NLO correction is smaller in tlgeregime.
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Figure 7: The spectral density @i = 0.015 andQ = 1 (top) and comparison dfgode()\) atQ=0and 1
(bottom). In the ChPT curves, the same valuesgf andF are used as inputs.

From these analysis the values2@f andF are extracted for each sea quark mass. Note that
2¢if IS extracted at the NLO accuracy, while the valud=ofwhich first appears at the NLO term,
might have larger systematic corrections from NNLO coniiitms. We find that the results for
2f are stable under change of two reference points in a rang®.03. As noted above, there is
little difference betweelN; = 2 andN; = 2+ 1 formulae;Z¢ andF are almost equal well within
the statistical error. The difference betweamgn= 0.080 andms = 0.100 is even weaker. In the
following analysis, we concentrate on the datanat= 0.080.

4.3 Chiral extrapolation of Zef

We next consider the sea quark mass dependenkg;ofAs shown in (4.9)2¢ is a function
of Z, F, Lg, which can be determined from the lattice data. The chiraleasate thus obtained
should have the NLO accuracy. In the fitting of the latticeagdate attempt (A) 3-parameteX,(F,
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Figure 8: The spectral density ah = 0.025 andL = 24 (top) and comparison m‘é”de()\) atL =24 and
16 (bottom). In the ChPT curves, the same valueEgf (but the volume dependence is corrected within
ChPT) and- are used as inputs.

Lg) fit without any inputs and (B) 2-parameteX, (Lg) fit with F = 0.0410 (forNs = 3 ChPT) or
with F = 0.0406 (forNs =2 ChPT). These values Bfcorrespond to the chiral limit &F extracted
from the analysis of the spectral function.

The fitting is shown in Fig. 9 for the case (A) with tig = 3 ChPT formula. We use the
lightest 4, 5, and 6 data points. All the curves are condistéth the lattice data used in the fit and
in fact thex? per degrees of freedom is reasonable (between 0.6 and 1rBjndrkable fact is that
the chiral limit (shown by a square) is not sensitive to thenbar of data points used. The chiral
limit is very stable because of the presence ofdgtregime data point. Similar curves are obtained
for the case withN¢ = 2 and for the case (B). With the 2-parameter fit (the case(i®heaviest
data point cannot be well describéds x2/d.o.f. is about 2.5.

From these curves, one can extract the low energy constai@sRT. Note in the case of
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Figure 9: Three parameter fit . TheNs = 3 ChPT formulais used.

N; = 3 ChPT, we have two limits of chiral condensa®% =3, where “three” flavor massless limit
is taken, an&P"s, which is a two-flavor chiral limit with strange quark massfibat a finite value
ms = 0.08. As already mentioned, the strange quark dependencesisalb that the difference
from the value at the physical strange quark mass is netgligithe extracted values a@P™s are
stable against the different choice of fitting function aritin range, whilezN'=2 shows strong
sensitivity to them. It means that the determinatiorE®f=2 is not feasible with our current data
set. This is natural because the strange quark mass deperidarot well controlled by the lattice
data. On the other hand, the determinatio@®¥is very stable, thanks to tteeregime data point.
Our estimate of systematic effects due to the chiral exteiom is~ 2 %.

From the above analysis, we determine the low-energy cotsstar 2+1-flavor QCD as

sPYS — 0.0018610)(44) ~ [226(4)(18)MeV]?, (4.12)
F = 0.040605)(41) ~ 74(1)(8)MeV, (4.13)
L5(770 MeV) = —0.0001125)(11), (4.14)

where the first error is statistical and the second errorsgesyatic, respectively.

To obtain the final result, we convert the value3#fYs to the definition in theMiS scheme,
by using the non-perturbative renormalization factor ¢addulated through the RI/MOM scheme
[53]. The result [34]=P"sin the limit of myg = 0 andm fixed at its physical value, is

sMS(2 GeV) = [242(04)(T12) MeV3. (4.15)

Let us here discuss possible systematic errors in (4.15)ceSiur lattice studies are done
at only one value op, it is difficult to estimate the discretization errors. Bushould be partly
reflected in the mismatch of the observables measured erelift ways. We here estimate it from
a mismatch of the lattice spacing; 0.1003(46) fm from thengiecay constant [55] and 0.1087(15)
fm from the Q baryon mass [56]. This 7.4% deviation is added in the sydienearor. The
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systematic error due to finite volume is estimated-ak4% using the lattice data at two different
volumes.

5. Summary and Conclusion

In this talk, a study of the spontaneous chiral symmetrylinggperformed by the JLQCD and
TWQCD collaborations has been presented. We discussetidingttopology is an essential part
for the dynamical overlap fermion simulations on the lattiBy reducing the numerical cost with
the topology fixing determinant, we have performed the fagi¢-scale simulations of dynamical
overlap quarks. The up and down quark masses are reducedtgltdse physical point. We have
then discussed that the global topology, as well as the fuolieme effect, can be described well
within the chiral perturbation theory. In fact, we have fdumgood agreement of our lattice data
for the Dirac operator spectrum with the ChPT predictionsnewn the region where its finite size
effect is large. We extract the chiral condensate in 2+1ofl@CD.
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