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In the past decade we have witnessed remarkable developrnmetite gauge-gravity duality,
which suggested a new approach to superstring theory anguquaspace-time. In this context
it is important to study supersymmetric larbegauge theories in the strongly coupled regime.
I will summarize the results and insights obtained so far bg-tattice simulations. A simple
example of the gauge-gravity duality is the one between 1M)d@auge theory with 16 super-
charges and the so-called black 0-brane solution in typeuligergravity. In order for this duality
to be valid, one has to take the 't Hooft larbelimit and to take the strong coupling limit on the
gauge theory side. The gauge theory can be regularized Ingfike gauge completely thanks to
one dimension, and by introducing a Fourier mode cutoff. Carethen use the standard RHMC
algorithm to simulate the system. The energy calculated fasetion of the temperature was
compared with the results obtained from the gravity sideedam the black hole thermodynam-
ics. This confirmed the gauge-gravity duality with high a@my and provided the microscopic
origin of the black hole thermodynamics. From the calcolatf the Wilson loop, one obtains
the Schwarzschild radius of the dual geometry. One can Btuse the present 1d model with
supersymmetric mass deformation to study= 4 super Yang-Mills theory oR x S* based on a
novel largeN reduction, which generalizes the original idea of Eguchd EKawai. A test of this
approach has been provided by Monte Carlo simulation at weagling. It is remarkable that
we can now simulate the 4d superconformal field theory, whjgbears in the most typical case
of the gauge-gravity duality known as the AdS/CFT corresfamte. In particular, no fine-tuning
is required unlike previous proposals based on the latégalarization.
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1. Introduction

| hesitate a bit to talk aboutton-latticesimulation at thidattice conference, but this is indeed
crucial for the purpose of simulating supersymmetric theories. What | dnggdo discuss is the
so-called gauge-gravity duality, which is a conjecture from superstriagryh[1,[2]. (See ref.
[B] for a comprehensive review.) The statement itself is simple, and wet égeh have to refer
to superstring theory. Let us considerNJ(supersymmetric Yang-Mills theory (SYM) with 16
supercharges (or 32 supercharges, in a special case). We take-tiafled 't Hooft limit, which
amounts to sendindy to infinity with fixed A = g%MN. Next we consider the strongly coupled
regime, namely the largg-regime. Then the statement is that the SYM is “dual” to a classical
solution in 10d supergravity.

The argument for this conjecture is actually very intuitive and easy to statet. In su-
perstring theories, there exists a soliton-like object termed D brane. “IDdistéor the Dirichlet
boundary condition imposed at the boundary of the worldsheet of a stiirfigane can extend in
p+ 1 dimensions, and it is characterized as a hypersurface on which stengshd on. Let us con-
sider an open string attached to the D brane propagating along it. In figuréne left, we describe
such a process diagrammatically. If one slices the diagram in the orthodjoaetion, one notices
that the same process can be viewed as emission of a closed string. Thexangple of the well-
known notion of open-string/closed-string duality. Note here that an epéry includes a gauge
particle as a massless mode, and similarly a closed string includes a gravitars datsideN D
branes lying on top of each other. Then, in the low energy limit, one obtansl)-dimensional
U(N) SYM as an effective theory which describes the massless degreegeddm of open strings
attached to the D branes. On the other hand, one obtains a curved teetispain the bulk since
the D brane sources gravitons. In order for the supergravity to beaskdow energy and classical
description of superstring theory in the bulk, one has to take the so-calkéabft largeN limit
with fixed A = g2y, N, and then to take the largetimit. This is so, since the string loop corrections
are suppressed by/lll, whereas the’ corrections, which are due to strings having finite extent,
are suppressed by some powers 6k 1

Why is this duality interesting? First of all, it is a realization of an old idea by "bfi¢H],
which states that the large-gauge theory is equivalent to some classical string theory, although
in those days people may not have anticipated that the string theory actuaByitiva curved
space-time. It is interesting that the curved space-time emerges from a tzemy in a flat
space. This aspect of the duality is often referred to asthergent space-timdn the gauge-
gravity duality, one typically obtains the anti-de Sitter space. If one corssttiergauge theory at
finite temperature, one obtains a black-hole-like geom¢jr{] [5, 6]. As apiplisa one can study
strongly coupled gauge theories, which are relevant to hadron anttosad matter physics, from
a curved space-time. One can also use the duality in the opposite directtbiryan explain
the microscopic origin of the black hole thermodynamics in terms of gauge théaryltimate
goal of the gauge-gravity duality is to construct a non-perturbativebao#tground independent
formulation of superstring theory by using gauge-theory degreegetlrm.

Since the gauge-gravity duality is a strong-weak duality, it is important to gjadge theories
in the strongly coupled regime. Monte Carlo simulation can be a powerful doaiuch purposes.
However, the problem is that the gauge theories we are interested in iyg@esygmmetry, which
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Figure 1: On the left, an open string attached to the D brane is propagatong it. On the right, the same
process has been viewed as emission of a closed string frioi Hrane.

is broken by the lattice. This can be seen immediately if one recalls the supersynaigebra
{Q, (5} 0 Py, where the generators for translation appear on the right hand sidee ®ia transla-
tional symmetry is broken by the lattice regularization, one necessarily beeglersymmetry.

Recently there are considerable developments in “lattice supersymmetrigh wdin be cat-
egorized into two classes. One is the construction of lattice actions with vayousmetries. For
instance, one can preserve one supercharge by using the so-calidabtoal twist. (See Catter-
all's contribution of this volume). The other one, which we discuss heranslattice simulations
[[] of supersymmetric gauge theories in 1 dimension with 16 superchdg@410]. Notably, one
can extend this approach to 3d and 4d gauge thedrigs [11] by using thefitlrgeN reduction
[LZ]. In the 4d case, the gauge theory becomes superconformaleandriber of supersymmetries
enhances from 16 to 32. This superconformal theory is interesting owitgight, but it is also
studied intensively in the context of the AAS/CFT correspondence, whiattypical case of the
gauge-gravity duality[J1]. The non-lattice simulation of the 4d supercomébtheory requires no
fine-tuning, unlike the previous proposals based on the lattice regulariZR8¢

This article is organized as follows. In sectifin 2 | discuss the non-lattice dionilaf 1d
SYM with 16 supercharges. In particular, | explain how black hole thegmathics appear from
1d SYM, and how the Schwarzschild radius appears from the Wilson loopedtior[ B | review
the largeN reduction, which enables us to extend these works to higher dimensiopatticular,
| discuss how one can study” = 4 SYM onR x S* in the 't Hooft limit, and present some prelim-
inary results for the Wilson loop and the two-point correlation functionssection[§# | conclude
with a summary.

2. Non-lattice smulation of 1d SYM with 16 supercharges

The 1d SYM with 16 supercharges has the following actions for the bogmaricand the
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fermionic part, respectively.

S =g [ e {3(0x0) - Fx0x 07} 2.1)
s = 5 [t {3waDw — Jwa(nosl. v | @22)

It is a 1d UN) gauge theory, and the covariant derivative is denote® as d; — i [A(t), - ].
Xj(t) (j=1,---,9) andWq(t) (a = 1,---,16) areN x N Hermitian matrices, and the theory has
SO(9) symmetry. When we are interested in finite temperature, we imposeipdraaohdary con-
ditions onX;(t) and anti-periodic boundary conditions 8fy (t). Then the temperature is given by
T = B~1, wherep is the extent in the Euclidean tim8 ¢lirection. The 't Hooft coupling constant
is defined byA = g?N, which has the dimension of mass cubed. The physics of the system is
determined only by the dimensionless coupling constapt= % Therefore one can take=1
without loss of generality. With this convention, the Iadwegime corresponds to the strongly cou-
pled regime, which is expected to have the dual gravity descripfjon [6]reaisehe highl regime
is essentially weakly coupled, and the high temperature expansion (HTg)lisable [14].

In non-lattice simulation[]7], we introduce an upper bound on the Fourierenasi; (t) =
SN A Xin€9M, wherew = %’T and similarly for the fermions. This idea does not work usually
because it breaks gauge invariance. (Recall that the Fourier modedigiaage invariant concept.)
However, in 1d, one can fix the gauge non-perturbatively in the follomag. We first take the
static diagonal gauga(t) = idiag(as,---,an), in which the gauge field is constant in time and
diagonal. By following the usual Faddeev-Popov procedure one abtain

Sp=— zbZIn
a<

as a term to be added to the action. The above gauge choice does not dixutipe symmetry
completely, and there is a residual symmetry given by

03— 0p
2

sin (2.3)

v ab v ab pab pab
Oy — Oa+ 2TV, , in— Xi,n—\/a+vlj ) an,n = Lpt:r,n—va-~-\/b ) (2.4)

which represents a topologically nontrivial gauge transformation qooreding to the gauge func-
tion g(t) = diag(é®"t, ... €@, This residual gauge symmetry can be fixed by imposimg<

o, < 11. One can then introduce the Fourier mode cufofSSince there is no UV divergence in this
1d model, one can take tife— oo limit naively, and one obtains the original gauge theory with 16
supercharges.

The system with finité\ can be simulated efficiently by using the standard RHMC algorithm
[LF]. In particular, the Fourier acceleratidn]16] can be implemented witixtua cost since we are
dealing with the Fourier modes directly as the fundamental degrees obfreethis is crucial in
reducing the critical slowing down at large (The same theory is also studied using the standard
lattice approach[[17]. However, from the results obtained so far, thelattice simulations seem
to be far more efficient in obtaining the continuum limit.)

Let us first discuss the phase structure that appears when oneeshifiegtemperature. As
is well known, the Polyakov line serves as an order parameter for thetameous breaking of
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the center symmetry. Figuf¢ 2 (Left) shows the resilts [8]. At high tempershe data agree
nicely with the HTE [1}] including the next-leading order. As the temperate@ehses below
T ~ 3, the data start to deviate, and at low temperature b&lew0.9, the data can be fitted to the

characteristic behavior of the “deconfined phase”

(P =exp(~2+b) .

(2.5)

In the temperature regime investigated, we find no phase transition. This iarp&ntrast to the
bosonic model[[34, 19, 0], which undergoes a phase transition to tindified phase” at ~ 0.9.
The absence of the phase transition is consistent with analyses on thg sice [$,[21].
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Figure 2: (Left) The Polyakov line is plotted againt The dashed line represents the result of HTE up
to the next leading order fdX = 12 [[14]. The dotted line represents a fit to gg.](2.5) veitk 0.15 and
b=0.072. (Right) The energy (normalized bif) is plotted against. The dashed line represents the result
obtained by HTE up to the next leading order for= 12 ]. The solid line represents the asymptotic
power-law behavior at small predicted by the gauge-gravity duality. The upper left paoems up the
region, where the power-law behavior sets in.

Let us turn to a quantitative prediction from the gauge-gravity duality. Gitae dual geome-
try, one can use Hawking's theory of the black hole thermodynamics to olasious thermody-
namic relations such ag ]22]

1 E T \ 145 9 [ g o T\ 14 1/5
N2<}\1/3>:C</\1/3> , c:14{4 15 (?) } —741....  (2.6)

The gauge-gravity duality predicts that this should be reproduced byrMii8 the largeN limit
atlowT [B]. The importance of this prediction is that, if it is true, it explains the micrpsrorigin
of the black hole thermodynamics, meaning that the 1d SYM provides the aqualescription of
the states inside the black hole.

In figure[2 (Right) we plot the internal enerdy [8], which is definedsy %(Bﬁ) in terms of
the free energy”. At T > 3 the data agree with the HTE J14]. As one goes to lower temperature,
the data points approach the solid line, which represents the résiilt (2éhedb from the 10d
black hole. (See refs[ [R3] for earlier studies based on the Gauggimoxamation.)

The plots in figurg]2 were actually presented two years ago at LATTIQH 20Regensburg
[P4]. A common criticism in those days was that it was not clear whether thgegtheory results
continue to follow the line predicted from gravity at low&r In fact, simulations at lowel
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are difficult, since one has to increaleproportionally to ¥T, and at the same time one has to
increaseN to avoid the run-away behavior due to finkf]. Instead of loweringr’, we were able
to determine the power of the subleading term[a [10]

1 E T \ 145 T \235

from gravity. This was derived by considering higher derivativerections in the supergravity
action due to the effects of strings having finite extemt ¢orrections). The coefficier® of

the subleading term is calculable in principle, but it requires the full informatibthe higher
derivative corrections, which are yet to be determined. By uding (Bckyever, we can already
make a nontrivial test of the gauge-gravity dual[ty][10]. In figfire 3 {Lefe plot the discrepancy
7.41T1/5 _ E /N2 againstT in the log-log scale, which reveals that the power of the subleading
term is indeed consistent with the predicted valug®3 4.6. In figure[B (Right) we find that the
data afT < 0.7 can be nicely fitted to the fornh (2.7) with= 5.58. Note also that th& = 6 data
seem to suffer from some finit& effects at lowT. From this point of view, we consider that the
A = 4 data points at lowW in figure[2 (Right), which seem to be on the curve of the leading order
result from gravity, also suffer from finit@ effects. Now we know that actually the subleading
term in (2.7) should be taken into account for precise agreement.
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Figure 3: (Left) The deviation of the internal enerq}ztE from the leading term A1T% s plotted against
the temperature in the log-log scale for= 1. The solid line represents a fit to a straight line with the
slope 4.6 predicted from the’ corrections on the gravity side. (Right) The internal enye@E is plotted
againstT for A = 1. The solid line represents the leading asymptotic behatiemallT predicted by the
gauge-gravity duality. The dashed line represents a fitedotshavior 7) including the subleading term
with C = 5.58.

As another prediction from the gauge-gravity duality, let us consider titgoWloop, which
winds around the temporal direction once, like the Polyakov line. Howewdike the usual
Polyakov line, we consider the one involving the adjoint scalar as

[P .
W= _—1tr Zexp {I/ dt{A{t) +ini X (t)}]| , (2.8)
0
wheren; is a unit vector in 9d, which can be chosen arbitrarily due to the SO(9)ianee. This
object can be calculated on the gravity side by considering the minimal swsfanning the loop
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in the dual geometry[[29, P6]. For the present model, the result is giyg#] b

BRSch T %8

whereRsch is the Schwarzschild radius of the dual black hole geometry and

1 (1675772 7°
:271{7} =1.89.-- . (2.10)

In figure [4 we plot the log of the Wilson loof][9] agairiBt3/® anticipating [2]9). Indeed, at
low temperature (to the right on the figure), we find that the data points cdittdx nicely to

a straight line with a slope 1.89 in precise agreement With 2.10). The solid dimesponds to
(log|W|) = 1.89T ~%/5 — 4,58, where the existence of the constant term can be understamd as
corrections. This result demonstrates that one can extract the infornoatioemdual geometry such
as the Schwarzschild radius from the gauge invariant obsenfabjle [2a8o confirms directly[]9]
the fuzz-ball picture[[37] of a black hole proposed to solve the informaiamadox.
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Figure 4: The plot of (log|W|) for A = 1 againstT ~%/5. The cutoffA is chosen as followsA = 12 for
N=4;A=06/T forN=6,8; A =4forN = 14; A =6 for N = 17. The dashed line represents the results
of the HTE up to the next-leading order filr= 14, which are obtained by applying the method in Ref. [14].
The solid line and the dotted line represent fitsfb= 6 andN = 4 respectively, to straight lines with the
slope 1.89 predicted from the gravity side at the leadingord

One can also predict various correlation functions from gravity. This dane ten years ago
by Sekino and Yoneyd [P8] extending the Gubser-Klebanov-Polykiten prescription[[2] to the
present case. For instance, let us consider an operator

Oy = St(X, %, - %,) , (2.11)

where the symbol “S” implies that all the indices are symmetrized. The two-poimélation
function of this operator is predicted as

1 4/-9

(O(t)0,(0)) ~ P P=—%5— (2.12)
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atA Y8 <« |t| < A ~Y3N/2L In figure[$ we plot the two-point correlation function for= 4,5,
which agrees precisely with the predicted power law behavior. See BHffdr more details as
well as results for other operators.
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Figure5: The two-point correlation functiofw,(t)£,(0)) is plotted for¢ = 4 (circles) and’ = 5 (triangles)
in the log-log scale. Simulations were carried oulNat 3, A = 12, T = 0.2. The straight lines are fits to
the predicted power-law behavidr (2.12).

3. Extension to higher dimensions based on the large-N reduction

In this section we discuss how one can extend the works in the previotisrs&x higher
dimensions. Respecting supersymmetry becomes more non-trivial in highenslons, but here
again we stick to a non-lattice regularization. For that purpose we use theofdine largeN
reduction, which we review briefly. Let us considerJ(gauge theory on B-dimensional torus,
and consider the Wilson loop defined by

w[c] = <33exp<i/A,J(x(a))>'(“(a)da>> , (3.1)

where the looiC is specified by the embedding functi@n= {x*(o)}. The corresponding largs-
reduced model can be obtained by simply reducing the torus to a point. This srtipdiewe drop
the x-dependence of the fiel, (x) and obtainA,. The Wilson loop in the reduced model can be

defined by
w[C] = <9>exp<i / Al X“(a)da>>red . (3.2)

Then the statement is that
lim wiC] = ’\Ilim WI[C] . (3.3)

N—oo

The original idea was formulated on the lattice by Eguchi and Kajwai [30jvéver, it was soon
pointed out by Bhanot, Heller and Neuberder [31] that there was dgwrotiue to the spontaneous
breaking of the center symmetry, which invalidates the proof of the statemewergd years ago
Narayanan and Neubergér]32] proposed to avoid the spontanesalsriy of the center symmetry
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by not reducing the torus to a point completely, but keeping the volume finit@ysigal units.
More recently, Kovtun, Unsal and Yaffe pointed opit][33] that the odbjroposal with the one-
site model actually works by adding an adjoint fermion if its mass is sufficientlyllsmhich
was supported by numerical simulatidn][34]. See Bringoltz and Sharpatsilsutions as well as
Hietanen’s one on this volume. (See also flefl [35] for a proposahfpnan-abelian gauge theory.)

Here we use the idea of the lardereduction in order to study’ = 4 SYM onR x S* as
proposed by Ref[[]12]. It actually differs from the original lalyereduction in that one deals with
a curved space rather than a torus, which is a flat space. The theaigeibafter reducing the®
to a point is given by the 1d SYM, which is nothing but the one discussed ipréwous section,
plus some mass deformation, which preserves 16 supersymmetries of #feramed theory. The
additional terms are given by

: 1,3 1,2 _ 3.
/ dt tr [2u2i21<>9>2+8u2az4(xa>2+lusnk>qxjxk+ giHPyi2¥ | | (3.4)

wherep is the deformation parameter, which is related to the radius oStefore reduction as

2
Rgs = —. 3.5
s = (3.5)

This mass deformed theory possesses many classical vacua givgn=buL;, wherel; is an
arbitrary (not necessarily irreducible) representation matrix of the pal¢@brall;,L;] =i &jx L.
These vacua preserve 16 supersymmetries, and they are all degenera
In order to retrieve the original 4d¢” = 4 SYM, one has to pick up a particular vacuum
L
I_i(n+1)

x
|
=

® Lk, (36)

' Li(n+v—1)

WhereLi(m) represents ther-dimensional irreducible representation of the SU(2) algebra. Note, in

particular, that there is an identity

(my2_ 1 2
E L. =- -1)1 g
e ( 1 ) 4( ) m (3 )

which implies that each dii(m) in (B.8) represents a fuzzy sphere with the radfugn? —1. In

this construction one regards t§2 as anS' fiber on S, where theS’ is represented by a fuzzy
sphere, and th&! fibration is represented by having many of them with different radii. A more
detailed argument for the reduction is given in rgf] [12]. The statemenatsrtthek — oo, n —
andv — o limits, one obtains thet” = 4 U(») SYM onR x S, where the radius o is given by
(B.3) and the 't Hooft coupling constant is given by

9’k

Asym = ZHZ(RSS)Sm :

(3.8)
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Note that one does not introduce the lattice structure anywhere in the farom lahich is impor-
tant for preserving supersymmetry.

A check of this novel largéN reduction has been provided [11] in the weak coupling limit
by studying the deconfinement transition at finite temperature. Figure 6ssti@w the results
obtained from the reduced model with the backgrond (3.6) reprodeckniwn result[[36] for
N =4 U(0) SYM onRx S in thek,n,v — oo limit.
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Figure 6: The normalized free energy of the reduced model around tbkgbaund ) withn = "T” in
thek — « andv — o limits is plotted against the dimensionless parameterexp(—u/2T) representing
temperature near the critical poix¢ = 0.072. The error bars represent the fitting error associatél thve
extrapolation. The solid line represents the re [36]he./ =4 U(w) SYMonRx S°.

In order to test the approach at strong coupling, let us consider thdanind/ilson loop in
N =4 U(w) SYM on R*. The expectation value of the Wilson loop is calculated exactly for
arbitrary coupling constant, and the result is given[ak [37]

2
(Weircular) = Aoy |1(\/M) (3.9)
eV 2sw
T (D) 2(2sym)¥ atAsym > 1 (3.10)

in terms of the modified Bessel function of the first kind. At strong couplinagitees with the
result obtained from the dual geometfy][25].

Since the#” = 4 SYM is conformally invariant, the theory d®* is equivalent to the theory
onRx S® through conformal mapping. The circular Wilson loop Rhis mapped to a great circle
on S at a point orR. (The size of the circular Wilson loop corresponds to the position of thet poin
on R, and the dilatation invariance d®&* corresponds to the translational invarianceRoh This
Wilson loop can be represented in the lafgeeduced model in a simple way as

Weircular = %tr [eXp<i4IjT{X3(t) —|—iX4(t)}>] ) (3.11)

wheret can be any value due to translational symmetry, and hence one can takeragesover it
to increase statistics.

10
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In figure[J we present our preliminary results for the circular Wilson Iq8§).[ (Here after,
we present results obtained by imposing periodic boundary conditionsrondns, since we are
interested in zero temperature.) We also plot the all order rdsujt (3.9). Ajththe matrix size is
obviously too small, our Monte Carlo results look promising. Note, in particthart, we already
start to observe a bent from the weak coupling behavior towards thegstaupling behavior.
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Figure 7: The log of the circular Wilson loop normalized hyAsyy is plotted against/Asym. We have
performed the\ — o extrapolation (linear in AA) using/A = 6,8,10. The extent in the time direction is
fixed to8 = 5. The background is chosen toe- 1, v = 2, k= 2 for /Asym < 2, whereas fok/Asym > 2,
we performed an extrapolation to= o using the data fok = 2,3 assuming that the finitk-effects are

O(1/k?). The solid line represents the all order res{ilt](3.9). Tashed line represents the behav]or (3.10)
at strong coupling, whereas the dotted line representstuirig perturbative behavior(W) ~ iAgyy.

Next let us consider chiral primary operators such & twhereZ = %(XML iXs). The
two-point function can be calculated in the weak coupling limit&f= 4 U(c)) SYM onR* as

J
C; Asym
tr22 (z)trZ2M(z))pe = ————= cy=1J . 3.12

< ( 1) ( 2)>R4 ’21_22|2‘] ) J 4112 ( )
It is known in.#" =4 SYM that the supersymmetry non-renormalization theorem holds for the
two-point functions. Hence, the resylt (3.12) actually holds for arlyitcaupling constant. As in
the case of the circular Wilson loop, one can make a conformal mappiRg 8%, and obtain for
J = 2, for instance,

cpe Mt

/dQs/dle (trZ%(t,Q3)tr2'(0,Q%))pyess = 1T e’

(3.13)
where we have integrated over tB&since the operator & (t) in the reduced model corresponds
to [dQatrZ’(t,Qz) in the SYM onRx S°.

In figure[3 we plot our preliminary results fdtr Z?(t) tr Z12(0)),eq against the dimensionless
time ut [B9]. Surprisingly our results for two different values &fyw turn out to be very close to
each other. This suggests that the non-renormalization theorem actudiyftroeach background.
In fact we can obtain results in the weak coupling limit of the reduced modehéobackground

11
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(B.8), and show that the correlation function approaches the[oné @rliBEe ./ = 4 U(w) SYM
in thek,n,v — oo limit [B9]. Therefore, if we are able to confirm the non-renormalization tago
for each background, it immediately implies that we can reproduce the rézsulte. 4 = 4 U(w)
SYM from the reduced model at arbitrary 't Hooft coupling constant.

1

01t

0.01 ¢

0.001 ¢

le-04

Figure 8: The two-point function of the chiral primary operator is @albted from the reduced model for
a fixed background@.G) with= 3, v =2 andk = 2. The UV cutoff is chosen to b& = 10. The circles
represent results fqu = 3, B = 4, which corresponds tdsym = 0.24. The triangles represent results for
u =1, B =10, which corresponds tdsyp = 6.4. Surprising, the results lie more or less on top of each
other. The solid line represents the analytic result in tieakvcoupling limit of the reduced model for the
same background in the — o0 andf3 — oo limits, which shows reasonable agreement with the MontéoCar
data. The dotted line represents the analytic result in teakwcoupling limit of the /" = 4 U(») SYM,
which is expected to be reproduced from the reduced modakik, t, v — oo limit.

What we have presented so far should be considered as a cheakmoéthod. More interest-
ing quantities are those which amet obtained in the strongly coupled gauge theory, and yet there
exist interesting predictions from gravity. Calculating such quantities bymathod will clearly
provide a new test of the ADS/CFT correspondence.

For instance, we can consider the rectangular Wilson lod}# jmvhich behaves as

(W(T x R)) = exp<g> (3.14)

atT > Rdue to conformal symmetry. This is in striking contrast to the area law in pung-¥aills
theory. In particular, the AdS/CFT correspondence predicts

y= L V2Asym (3.15)
r4(1/4)
at strong coupling[[25].

It would be also interesting to study higher point functions of the chiral pyroperators. (See
ref. [40] for calculation of extremal 3-point functions by simulating a “cated theory” composed
of six commuting bosonic matrices.) In particular, AdS/CFT predicts that né&nereal 4-point
functions violate the non-renormalization theorem. It is interesting to cheekhg&hthis is indeed

the case, and to obtain explicit results, which can be compared with the tiwadiom gravity.

12
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4. Summary

| hope | have convinced the readers that non-lattice simulations are indeéd for studying
supersymmetric largdt gauge theories in the strongly coupled regime. In the first part, | dis-
cussed the 1d SYM with 16 supercharges, which reproduced blackhei®odynamics and the
Schwarzschild radius of the dual geometry. These results revealed dimenections to gravity
as predicted by the gauge-gravity duality. In particular, the gauge thesujts provided a clear
understanding of the microscopic origin of the black hole thermodynamicthelsecond part, |
discussed how one can extend these works to higher dimensions by usinguél largeN re-
duction. | have presented some preliminary results #6r= 4 U(o) SYM onRx S. This theory
is superconformal, and it actually has 32 supersymmetries. Our formulatisempes 16 super-
symmetries in thé\ — o limit, and the remaining half of the supersymmetries are expected to be
restored without fine-tuning by increasing the matrix size.

In a way, what we have seen is the beginning of a whole new field ofr&@saaalogous to the
situation of the lattice gauge theory in early 80s. Now with the aid of supersyyieuedrlargeN,
we have just started to explore superstring theory and quantum spacfetimérst principles.
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