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1. Introduction

Scattering phase shift is an important physical observabies own right. However, for nu-
clear physics, it is more advantageous to convert it intoria fof the nuclear potential. Once such
a nuclear potential is at our disposal, we can conveniersityitto study a variety of nuclear phe-
nomena based on the effective degrees of freedom, i.e.utleans. It provides us with physics
insights into the structures and the reactions of atomidemuas well as the supernova explosion
of type Il and the structure of neutron stars through the eguaf states of cold and dense nuclear
matter. Enormous efforts in this line are integrated intora¥ of realistic nuclear potentials [1]. By
using about 46- 50 adjustable parameters, they can reproduce severalahadsi®f experimental
NN data withx?/NDF ~ 1, which consist of the scattering phase shifts and the daufgroperty.
Also, the potentials from the chiral effective field theotiract an growing interest [2].

Unlike the nucleon sector, only a limited number of expenitatinformation is available in
the hyperon sector. This is due to the absence of acceldetitities, which can generate direct
hyperon beam. If there were a sufficient number of experialenformation on the hyperon-
hyperon and hyperon-nucleon scatterings, they would bescted into realistic hyperon potentials,
which could help us study the structure of hyper-nuclei aoskfble generation of hyperon matter
in the neutron star core.

The standard method to obtain the scattering phase shifttioe QCD is Lischer’s finite
volume method [3]. It can be used to provide QCD predictipostdictions for the scattering phase
shifts not only in the nucleon sector [4, 5], but also in th@drpn sectors [6]. One may come up
with a straightforward way to obtain realistic inter-banypotentials in lattice QCD, i.e., sufficient
number of scattering phase shifts are generated by Liscim&thod at the initial stage, which are
converted to inter-baryon potentials with the help of theeinse scattering theory. However, this
is difficult in practice, because it involves an infinite nuenlof scattering phase shift at the initial
stage. Thus, it is desirable to have a direct method to olb&hstic inter-baryon potentials in
lattice QCD.

The method recently proposed by Ref. [7] is such a methodaritle given a background
in terms of Luscher’s finite volume method. By using the dffecSchrédinger equation, it con-
structs nuclear potentials from the Bethe-Salpeter (BSjewanctions generated by lattice QCD.
Since the information of the scattering phase shift is erdbddn the long distance part of the BS
wave functions, it is possible to generate a realistic rargimtential, which reproduces the QCD
predictions of the scattering phase shift extracted by héss method.

In this paper, after a brief review of the general idea howdbstruct a realistic nuclear po-
tential in lattice QCD, we present quenched QCD results efdéntral and the tensor potentials
obtained at the leading order of the derivative expansidterAhe discussion of the convergence of
the derivative expansion, we give dynamical QCD resultsdiggi2+1 flavor gauge configurations
generated by PACS-CS Collaboration. Finally, we mentianhiperon potentialsN= andNA),
to which our method can be equally applied.

2. General idea to construct nuclear potential in QCD

We consider (equial-time) Bethe-Salpeter (BS) wave famcfor two nucleons in the center
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of mass frame. By choosing particular composite interjpradatields p(x) andn(x) for proton and
neutron, the BS wave function is defined as

w(%=9) = (0]p(On()| PERIN(K).in) = lim (O[T [p(x,)n(y.0))| pRn(~K).in),  (2.1)

t—+0

wherek denotes the asymptotic momentum of the proton relative eéontkutron. It is related to

the relativistic total energy of the stateRs= 2/ %, + k2 with my being the nucleon mass. Quite
naively, this matrix element may be regarded as an amplitodied three quarks & and another
three quarks ay, where p(X) and n(y) are used to probe nucleons in the stgiék)n(—k),in).
At long distancelX — y| — large, it shows an asymptotic behavior, which is charanteriby the
scattering phase shi (k) in exactly the same way as a scattering wave function in tfaetgun
mechanics as [8, 9, 10]

sin(kix—y| —m/2+§(Kk))
kIX—y]

To prove this behavior, Nishijima-Zimmerman-Haag (NZHjuetion formula [11] is conveniently

used. Note that any local composite nucleon filic) leads to the same asymptotic behavior

Eqg. (2.2), as far asl(x) has non-vanishing overlap with a single nucleon state,(D&N(x)|N) # O.

In LUscher’s finite volume method, which is the standard métto calculate the scattering phase

shift in lattice QCD, the phase shift embedded in BS wavetifangn this manner is extracted from

the energy spectrum in a finite periodic box [3]. (For explige of BS wave function in Lischer’s

finite volume method, see Ref. [9].)

For nuclear physics, it is more advantageous to convertake af the phase shift into a form
of nuclear potentials. We therefore wish to extend Lissherethod so as to obtain the nuclear
potentials directly. For this purpose, we use the remagkalvhilarity in the asymptotic behaviors
between the BS wave function Eq. (2.2) of QCD and the scagiasiave function in the quantum
mechanics. This similarity motivates us to construct a@aicpotential so that it can reproduce all
the BS wave functions simultaneously in wide range of enezggion. Then, the resulting potential
can reproduce the phase shifts predicted by QCD. In this Wwéygcomes possible to construct
realistic nuclear potentials by lattice QCD.

To proceed, we define the nuclear potenitlaf’,r’) by the effective Schrodinger equation [10]

(R 9) ~A

(2.2)

(A + 1K) g (F) = my /d3r’ U(F.7) (7). 2.3)

wheremy denotes the nucleon mass. We demand this equation to beamolisly satisfied by
@ (7) in wide k region (or wide energy ¢'mg, + k2 region). Note thatl (7,7) is most generally a
non-local potential, and that, with our definitidd(r,r’) does not depend on the relativistic total
energyPy = 21/ R, + k2.

Several comments are in order.

(i) With our prescription, precise forms of potentials degen particular choices of interpo-
lating fieldsp(x) andn(x). However, even if their particular shapes are differenésthpotentials
lead to the same phase shift. Remember that these potergatenstructed so as to give the phase
shift obtained by Lischer's method, which does not depend particular choice of interpolat-
ing fields. The situation is analogous to the unitary tramsfdion in quantum mechanics, i.e.,
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shapes of potentials are changed by unitary transformatiatiout affecting any observables. The

potentials, which lead to the same phase shift, are said phése-shift equivalent to each other.
(ii) Here, for simplicity, we do not pay attention to the arjonality of the BS wave functions.

In general, the BS wave functions are not expected to be gotied to each other with respect

to the three-dimensional integral %sd3x W X Wip (R) # A 83(k—K). If the violation of
the orthogonality is serious, we have to take care of theogdhalization to avoid non-hermitian
potentials [10].

3. The Derivative Expansion

To construct the non-local potentidl(r,r’) in Eq. (2.3), it is necessary to generate infinite
number of BS wave functions, which is difficult in lattice QCDhe reason is two fold. (i) The
energy spectrum is discretized in a finite spatial box. (iifhAugh there is a method to access
excited states in lattice QCD, it becomes the more diffionlatcess the higher excited states.
Thus, we need an approximation, which enables us to condtr(¢x') with a limited number
of BS wave functions. For this purpose, we use the derivakmansion. We can start with the
leading local potentials, and then take into account ptessibn-local terms (potentials, which
contain derivatives) order by order. If the non-localityeet appears to be large, the convergence
can be improved by changing the interpolating fighds) andn(y) in the sink side.

To proceed, we impose general requirements on the non4mtahtialU (X,X) arising from
the translational invariance, Galilean invariance, symmyneondition (identical particle condition),
spatial rotation, spatial reflection, time-reversal im@ace and hermiticity. The most general form
has been derived in Ref. [12], to which we apply the derieaéxpansion. We are left with

U'(%.%) = Vin(%, D)3 (xX-X) (3.1)
Vi (&, D) = V3 (r) +V5(r) 81- G2+ V4 (r) Sia+V/'s(r) L-S+0(0?),
wherel indicates the total iso-spin of the two nucleon systemando, act on the spin indices of
the first and the second nucleons, respectivBly.= 3(dy - X) (02 - X) /%2 — 01 - G2 is referred to as
the tensor operatoi. = i X x [J denotes the orbital angular momentum operafor (G + &) /2

denotes the total spin operator. Singe G, reduces to 1 for spin triplet, and3 for spin singlet,
Vo(r) + Vg (r) 01 - 82 is conveniently combined into the form of theehtral potential” Vz(r) as

Ve(rit So) = Vo(r) — Vo (r), Ve(r;®S1) = Vo(r) + Vo (r). (3.2)

V() andV s(r) are referred to as the tensor potential and the LS potengigphectively. Note that
Ve(r), Vr (r) andV s(r) play important roles in conventional nuclear physics.
At the leading order, we truncate the nuclear potential lglewing all the derivative terms as

Vin (%, £1) = Ve (1) +Vr (1) Sio+ O(D)). (3.3)
We insert this into the effective Schrodinger equation Bg3)to have

2
<—méN FVe(r) + Vi (r) 512) Y(F) = :;—Nlllp(f’)- (3.4)
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Note that the reduced mass of two nucleon systemasmy /2. ForJ” = 0% (1), | = 1 channel,
a further reduction is possible. SinSg acts as zero on wave functions i§ channel, we can
rewrite it as

k1 Ay
N my my l,U-k(r') '

We use this formula to obtain the central potentiat® channel at the leading order of the deriva-
tive expansion. Fai” = 17 (3S, —2D; coupled systeml) = 0 channel (the deuteron channel), the
procedure is slightly involved, which is to be considere&ett. 6.

At the next to leading order, we include the terms, which am# a single derivative, i.e.,
VLs(r) E . §as

Ve(rils) (3.5)

Vi (%, D) = V(1) +Vr (1) Si2+Vis(r) L- S+ O(02). (3.6)

This is inserted into the effective Schrodinger equation ). Note that the action &f- S on

JP = 0" (!S) channel vanishes. Therefore, the formula Eq. (3.5) do¢ésmange at this order.
In contrast,L - S gives a non-vanishing contribution 5 = 1 (3S; —3 D) channel. Hence, the
formula to calculat&(r) andVy (r) is modified. We need an additional BS wave function to obtain
these three potentials at this order.

At the next to next to leading order, we includxéﬁz) terms in the potential, which is inserted
to the effective Schrédinger equation Eqg. (2.3). To obtamese potentials, we need further BS
wave functions. We perform this procedure repeatedly taialtigher derivative terms by using
increasing number of BS wave functions.

It is important to examine the convergence of the derivatikgansion. The non-local potential
is faithful to the scattering data in wide range of energyiaegwhile it may not be so after the
derivative expansion is applied. If the convergence apabe unsatisfactory, improvement has
to be done by changing interpolating field of nucleon.

4. Lattice QCD setup

We use quenched QCD unless otherwise indicated. We empdostéimdard plaquette gauge
action with3 = 5.7 to generate gauge configurations on the lattice of the &i%& Bk (N; = 32 and
48). The scale unit is introduced by rho meson mass in thaldimnit, which leads to the lattice
spacinga~! = 1.44(2) GeV (a~ 0.137 fm) [4]. The spatial extension amounts.te- 32a ~ 4.4 fm.
1000-4000 gauge configurations are used in our calculatiQusrk propagators are generated by
employing the standard Wilson quark action with the hopgiacameterk = 0.164Q 0.1665 and
0.1678, which correspond tm; ~ 731,529 and 380 MeV andw ~ 15581334 and 1197 MeV,
respectively. Unless otherwise indicated, Dirichlet ardgric boundary conditions are imposed
on quark fields along the temporal and spatial directiorspeetively.

To obtain the BS wave function, we generate the four pointetator of the nucleon field as

G(X—V.t) = (O[T [p(X.t)n(¥,t)p(t = O)A(t = 0)]|0), (4.1)

where p(x) andn(x) denote local composite fields for proton and neutron, forcivhwe employ
the standard ones gxx) = anc (Ug (X)Cys0b(X)) U(X), N(X) = €anc (Ug (X)Cys0s(X)) d(X). These
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fields are represented by Heisenberg picture in imaginame.tip(t) andn(t) denote interpolat-
ing fields for proton and neutron (wall source), i) = Yzyz&ancUc(X:t) (do(¥,t)CyUa(Zt)T),
N(t) = Yryz€acdc(X ) (do(V,t)CysUa(Zt)T) . Note that the total spatial momentum of the system
vanishes because of the wall source. Therefore Eq. (4.Dnbes a function oK —y due to the
translational invariance. Eg. (4.1) for the large Euclidéiaet > 0 is dominated by the contribu-
tion from the lowest-lying state as

GR-yt) =Y (0| p(R,t)N(¥,t)| En) (En|P(0)N(0)| 0) = Ag & E g, (R—§) + -, (4.2)
n

whereEg denotes the energy of the lowest lying stég), andAg = (Eo|p(0)N(0)|0). Ye,(X—Y) =
<0|p(x’)n(y)\ Eo) denotes the BS wave function. Needless to gay(F) does not depend on a
particular choice of the interpolating fields in the sourimkesas long agEy|p n|0) # 0. (We use
the wall source for the efficiency reason.) Quantum numbgtseowave function such a¥ are
controlled by quantum numbers of the interpolating fieldthimm source side. Because we adopted
the wall source)” = 0" and 1" are obtained by combining the spinspéandn.

5. Central potential at the leading order of the derivative expansion
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Figure 1: (a) BS wave functions it and3S; channels fom;,; ~ 529 MeV. The inset is a 3D plot of
Y(x,y,z= 0) for 'S. The curves denote the results of the fits using the Greenitian of Helmholtz
equation in the region H< r < 16a and (b) The central potential & channel and the effective central
potential inS; channel fomy;; ~ 529 MeV.

Fig. 1(a) shows the quenched result of BS wave functionsSjrand3S; channels. To pick
up “s-wave’ component §S;) from the BS wave function id® = 1* channel, which i$S; —3D;
coupled system, we make a spatial average with respect touthie groupO as Y,g (73S =
2—14de0 Wap(gr). Calculations are fully performed far < 0.7 fm, while, forr > 0.7 fm, we
restrict ourselves to the points on the coordinate axes lagid hearest neighbors to reduce the
calculational cost. (A rapid change of the potential is expe forr < 0.7 fm, whereas a rather
mild change is expected for> 0.7 fm.) We see that there are shrinks at short distance, which
suggest the existence of repulsion. By using Eq. (3.5), ¢éinéral potentiaVc(r) in 1S channel is
constructed at the leading order. The result is shown inHKig).
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To obtain the central potential #8, channel, it is necessary to consider a coupled Schrédinger
equations ofS; and®D; channels, which will be discussed in Sect. 6. Here, we sirapply the
same formula Eq. (3.5) to the wave functior’® channel. Note that the resulting central potential
can reproduce th&s; wave function without involving the tensor potential. Sactentral potential
is referred as theeffective central potential”, in which the effect of the tensor potential is embedded
implicitly. The result is also shown in Fig. 1(b).

In Fig. 1(b), we wee that phenomenological properties ofdbetral nuclear potentials are
reproduced. A repulsive core at short distance is surraditgean attraction at medium distance.
The effective central potential i#8; channel tends to be more attractive than the central patenti
in 1S channel. This is desirable for the existence of a bound $tieteron) in’S; channel in
reality. (No bound state exists #% channel.)

The non-relativistic energie = Ez/mN in Eqg. (3.5) is obtained by making a fit of BS wave
functions with Green’s function of Helmholtz equation defiras

(A+K)G(X:K?) = -3 (%), (5.1)

whered, (X) = Y rczzexp(2mifi-X/L) denotes the periodic delta function in the three dimensiona
torus of spatial extension. The fitis performed in the region &3S r < 16a, where the interaction

is seen to become negligible from a plotiy(X) /@ (X) [9]. The resulting non-relativistic energies
are quite small, i.e.E = —0.50994) MeV for 1S, channel andE = —0.560(110) MeV for 35
channel. Note that negatie does not necessarily mean a formation of a bound state. $his i
because two nucleons cannot be separated from each othmmndbthe range of interaction in a
finite volume. The result is also shown in Fig. 1(a), wheredatg functions along the coordinate
axis are plotted with solid lines.
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Figure 2: (a) The central potential ihS channel for three quark masses and (b) those wgithultiplied.

Fig. 2(a) shows the central potentials'i® channel at the leading order for three values of the
quark mass. To see the strength of the potentials more aebynae plot them with a factar? in
Fig. 2(b) to reflect the effect of three-dimensional volunteneent. We see that, as the quark mass
decreases, the repulsive core at short distance growdyagidl the attraction at medium distance
is enhanced gradually. The enhancement of the attractioatisal, since the smaller quark mass
enables the virtual pion to propagate the longer distanbesé results suggest the importance of
direct lattice QCD calculations in the light quark mass oegi



Lattice study of nuclear forces Noriyoshi Ishii

6. Tensor Potential at the leading order of the derivative egansion

In order to construct the central and the tensor potentitatsnecessary to take into account the
coupling of s-wavd(= 0) and d-waved(= 2) components of BS wave function 3f = 1+ (I = 0)
channel. Note that the coupling is induced by the tensornpiale due to which the deuteron is
generated as a bound state in reality. The tensor potetigd p key role in the stability of atomic
nuclei and the saturation of nuclear matter density. Itsargmce at short distance is pointed
out recently by experimental studies of Short Ranged Catedl (SRC) nucleon pair, which may
affects the structure of the cold dense nuclear system ssicte@tron stars [13]. However, the
experimental determination of tensor potential at shastagtice is difficult, because it appears on
top of the repulsive core and the centrifugal barrier.

Construction of tensor potential depends on the qualitywhgie wave function on the lattice.
On the lattice, we construct a BS wave functionTif representation of the cubic group, which
corresponds td” = 1* up toJ > 4 contamination. We decompose it into orbitadly part /(S (1),
which corresponds to s-wave uplte> 4 contamination, and orbitally no#f part ¢®) (). The
decomposition is performed by using the projection opesdandQ defined as

S (D)

W (1) = PlWlap (1) = 2—149; Wap(O). W (1) = QUWlap (7) = Yap(") — Y3 . (6.1)

whereO denotes the cubic group with 24 elements. From the orthdijpmnelations of the charac-
ters of the representations, we find that the orbital pag/¥ (1) consists of eitheE™*, T," or T,"
representationsE* andT," correspond to d-wave up to> 4 contamination. Orbital;" represen-
tation corresponds to g-wave=£ 4) up tol > 6, which enters through® = 4" component ofA]
through the relation 4(JP) = 1(spin) ® 4" (orbital). Fig. 3(b) shows BS wave functions f&;"
(JP ~ 1%) and the azimuthal quantum numbdr= 0. We see thaty® is single-valued, whereas
w®)s are multi-valued. Since the angular dependence masifestlf as multi-valuedness, it
follows that ¥ is dominated by s-wave contribution. To conside®), we note that d-wave

b
@ ’mo.'.ooooooo © /moo.Oooooooo
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(D) —a o Yool T
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Figure 3: (a) BS wave functions on the lattice and (b) BS wave functfter &amoving the spinor harmonics
factors.
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component is proportional to thepinor harmonics’ in SO(3) symmetric limit as

F) Wo(F I 3 Yoo1(F)  —ZY20(F)
[Woo(r) L.UOl(r)] 082, o(F) =/~ ! V6

Wo(F) Ya(F) Mo =V167 | 2vy0r) Yora) ©-2

To examine whethep(P) is dominated by d-wave or not, we divige®) by these spinor harmonics
factors. Fig. 3(b) shows the results. We see th& becomes single valued, which indicates that
¢®) is dominated by d-wave.

To separate the s-wave and the d-wave parts, we apply thecfiooj operator$® and Q to
Eq. (3.4). Sincé&/c(r) andVy () commute withP andQ due to the rotational invariance, we have

~ S PUT HVCOPU) Vi (Pl (1) = ——PU(r) ©3)

—mﬁqugm Ve (P)QUE(T) + Vi (P QS (F) = ~ Qui(7).

Note that each of these two equations has two spinor indimsupper line, we have essentially a
unique choice. (0,1) and(1,0) components agree to each other up to an overall sign.) Imasint
we can play with a particular choice of spin components ferltdwer line. Eq. (6.2) suggests that
(0,1) and(1,0) component correspond t-representation, whered6,0) and(1,1) component
correspond tal,-representation. Since SO(3) symmetry is not exact, thalteedepend on how
we choose d-wave wave function. For simplicity in this sattive choos€0,1) spin component
from the lower line for d-wave. Eq. (6.3) is arranged as

PY(T), PSag(r) | |Ve() — & | _ | P 64
Qui(7), QSayx () | | Ve (1) %Q‘Pﬁ(?) ; .

which can be algebraically solved g (F) andVr () point by point. Unlike the central potential,
the tensor potential does not involve an additional shift—lq&%, which adjusts zero at the spatial
infinity. In Sect. 8, we employ another choice for the d-waweerf the lower line by combining the

four spinor components with the spinor harmonits) = Yg'jf)M:O(f) as

2
Y () [QUap (1) (vc,(r) - %) Y (@Sl ap (1) Ve (1) = Y s (1) 2 QU 1)
(6.5)
Once SO(3) is realized as a good symmetry, this becomes ghelhegice.

Fig. 4(a) shows the results of the tensor potential togetlitr the central and the effective
central potentials. The shape of our tensor potential islairto the one-boson exchange result,
which is obtained by the cancellation between the pion exghand the rho meson exchange [14].
The difference between the central and the effective clembtantials is understood by treating the
tensor potential in the second order perturbation thedrgeéms to be smaller than phenomeno-
logically expected. This is due to the heavy quark mass.dddas is seen in Fig. 4(b), the tensor
potential is enhanced in the light quark mass region.

A spike in the tensor potential at~ 0.5 fm is due to the zero df,o(f) 0 3cog 6 — 1. Note
thatY o(f) vanishes on the lings= (£n,4n,+n). In the vicinity of these lines, it becomes difficult
to solve the coupled equation numerically, which leads ¢cettcumulated statistical error.
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Figure 4: (a) The tensor, the central and the effective central piatisnin S, —2 D, coupled channel for
mpi = 529 MeV and (b) the tensor potentials for three values ofkjusasses.

7. Convergence of the derivative expansion

We examine the convergence of derivative expansion by congpawo potentials generated
at two energie& ~ 0 MeV andkE ~ 45 MeV [15]. As soon as the derivative expansion is truncated
energy dependence may appear in the potential, becauseoit iis general possible to reproduce
all the BS wave functions simultaneously only with truncatiegrees of freedom. In this way, the
energy dependence of the potential is related to the naipof the potential, which makes it
possible to check the convergence of derivative expansia@xamining the energy dependence.

We generate two potentials by imposing different spatialisiary conditions on quark fields.
A potential atE ~ 0 MeV is generated with the periodic boundary condition (PBCpotential at
E ~ 45 MeV is generated with the anti-periodic boundary conditfAPBC). With APBC, since
each nucleon consists of odd number of quarks, a nucleorsissaibject to APBC, so that its
spatial momentum is discretized ps= (2n; + 1)1t/L with n; € Z. For a two nucleon system, the
interaction (nuclear force) induces a modification fromfite value, i.e.,pi('e') ~ (2m + 1)m/L.
Note that the smallest spatial momentum for APB@§) ~ (4r1/L,+m1/L,+71/L), which does
not vanish. In the box with. ~ 4.4 fm, |p('®)| ~ /3m/L = 244 MeV. Comparison is made by
using the setup witlm; = 529 MeV, my ~ 1333 MeV, which leads to the non-relativistic energy
of the lowest-lying stat& = k?/my ~ 45 MeV. The results are shown in Fig. 5. We see that the
agreement is quite good except small deviations at shddris. The structures appearing in the
regionr 2 1 fm for APBC turn out to be caused by a small contaminatiomadxcited state [15]. It
follows that the derivative expansion works, and that ogalgotential constructed at the leading
order can be reliably used in the energy regiory 0— 45 MeV. (See Ref. [15] for detail.)

8. 2+1 flavor QCD result of nuclear force with PACS-CS gauge atfiguration

In order to study the quantitative features of nuclear pitdés) it is necessary to resort to
dynamical QCD performed in the light quark mass region ewiplp a large spatial volume.
PACS-CS Collaboration is generating such gauge configunsitii.e., 2+1 flavor gauge config-
urations, which cover the physical quark mass employingelaspatial volumes ~ 3 —6 fm

10



Lattice study of nuclear forces

Noriyoshi Ishii

600

Ve(r) [MeV]
100 Z5[MBV]
0MeV] o

400

200

500

400

300

200

100

50

oo P

45[MeV] ——
0[MeV] ——

45[MeV]
0MeV.

] ——

0
20 | °

ol 40

., 005 11
.

o g?
2 E1d

-50

VT(r) [MeV]

0.5 1
r[fm]

15 2

Figure 5: Comparisons of leading order potentials generated at twogéss, i.e.E ~ 0 MeV by PBC and at
E ~ 45 MeV by APBC. The left, middle, right figures show the cehpratential in'S, channel, the central
and the tensor potentials #; —2 D1 coupled channel, respectively.

[16]. We use PACS-CS gauge configurations to obtain 2+1 flQ@©D results of nuclear poten-
tials. The gauge configurations are generated by employirmgdki gauge action 8 = 1.90
on 32 x 64 lattice and CH)-improved Wilson quark (clover) action with a non-pertatigely
improved coefficientsw = 1.715. m;, mk andmg are used to determine the scale umit =
2.176(31) GeV (a~ 0.091 fm) leading to the spatial extensibn= 32a~ 2.90 fm [16]. To cal-
culate nuclear potentials, we use three series of PACS-@8egeonfigurations withik,qg, Ks) =
(0.1670Q00.16400, (0.167270.16400 and (0.167540.16400, which correspond ten; ~ 701,
570 and 411 MeV andhy ~ 15831412 and 1215 MeV, respectively.
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Figure 6: (a) 2+1 flavor QCD results of the central and tensor potenfiat m; = 701 MeV, and (b)
guenched QCD results of the central and tensor potentialsfe= 731 MeV.

Fig. 6(a) shows the 2+1 flavor QCD results of the nuclear giatisrfor m; ~ 701 MeV, which
should be compared with the quenched results in Fig. 6(bpofparable pion mass,; ~ 731
MeV. We see that the repulsive cores at short distance arténiser potential become significantly
enhanced. The attraction at medium distance tends to liegkif outer region, whereas it remains
almost unchanged in magnitude. Although these changes exegused by dynamical quarks, they
may be due to a lattice discretization artifact. We neech&urinformation to conclude.

Fig. 7 shows the central potenti(r) in 1S channel and the central potentig)(r) and the
tensor potentiaWr (r) in 3§ —3D; coupled channel, together with those multiplied. Similar
tendencies are observed as the quenched QCD, such as timeemieats of the repulsive cores at
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channel, (e)?V¢(r) in S, —3D; coupled channel, (V1 (r) for 3S; —3 D4 coupled channel.

short distance, the attractive pockets at medium distaarathe strength of the tensor potential.
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Figure 8: (a) Scattering phase shifts & channel from the lattice nuclear potentials and (b) thosk thie
empirical one.

Fig. 8 shows the phase shifts obtained from the nuclear paleiinot by Liischer's method).
At low energy, the phase shift grows up, which is caused byattraction at medium distance. At
high energy, the phase shift decrease, which is a consegoétite repulsive core at short distance.
One may wonder why the order of the phase shiftengf= 570 and 701 MeV is inverted. The
reason seems to be that the repulsive core grows more ragidltle attraction grows. Qualitative
shape of the phase shift is seen to be reasonable, which te thefact that the qualitative features
of the nuclear potential are already reproduced. Howewnparing with the empirical one, the
strength is not satisfactory at all, which suggests the mapae of the light quark mass effect.

A technical comment is in order. To obtain the scatteringgtenthe ground state saturation
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has to be achieved to an accuracy of, at most, around 1 Me\¢hwhiabout 0.05 % of the total
mass of the two nucleon system. For the moment, such a higisyne is not yet attained in our
calculation. Significantly largé and, accordingly, the large statitics are required. Toudate
only the scattering length, the smeared source is bettarttigawall source for such high precision
calculations. The smeared source, with the help of the geeoaer the relative coordinatein
the sink side, projects out the excited state contaminditam the temporal correlation. However,
to calculate the BS wave function, which measures the dpatieelation, the sink has to be un-
averaged, and the ground state saturation has to be aclpeiredy point uniformly in the spatial
directions. Note that the smeared source creates a spatipieezed BS wave function in the small
t region, which gradually broadens during the temporal eiah, until the ground state shape is
achieved. Here, the convergence in the regidr> 1 fm is quite slow, and unreasonably large
is required for the uniform saturation by the ground stater flture applications to the nuclear
physics, it is necessary to seek for a better source, whidtesid possible to achieve the uniform
saturation of the ground state BS wave function more efftlyien

9. Hyperon potentials

Hyperon potentials (hyperon-nucleon and hyperon-hypgesamve as the starting point in
studying the hyper-nuclei structure. They have large imidgeon the hyperon matter generation in
neutron star core. In spite of their importance, we have anliynited knowledge of the hyperon
potentials, because of the lack of experimental infornmatiBince we do not need any information
from the scattering experiment, we apply our method to cansthe hyperon potentials. The first
attempts have been made to constiigt(l = 0) potentials an®NA. The results are shown in Fig. 9
(See Refs. [17, 18] for detail.) These calculations aredeitended tdNZ andAA potentials. It
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Figure 9: N= potentials( = 1) from quenched QCD (left) and/A potentials from 2+1 flavor QCD (right).

is important to examine the convergence of the derivatiygaegion. After this process, the reli-
ability of the potential is guaranteed in the well-defineglagability region. Such potentials may
be used as alternatives to experimentally constructechpalg, before experimental information
on various hyperon scatterings becomes fully available.

Hyperon potentials give us another benefit. Their flavorcstne is expected to provide us
with an important key to unveil the physical origin of the wgive core. To obtain a simplified
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picture, investigations in the flavor SU(3) idealized limibuld be useful and interesting. Works
are in progress along this line [19]. It would be also intérgsto compare these numerical results
with analytical ones obtained by the operator product esjen[20].

10. Summary

We have reported lattice study of nuclear potentials basethe equal-time Bethe-Salpeter
(BS) wave function for two nucleon system. We have definedhtietear potential by the effective
Schradinger equation demanding that it should generat®$wave functions in wide range of
energy region simultaneously. The method generates tieatisclear potentials, because of the
remarkable similarity in the asymptotic behaviors betwd#es BS wave function of QCD and
the non-relativistic wave function of scattering statehe fjuantum mechanics. The central and
the tensor potentials have been obtained at the leading ofdbe derivative expansion, which
show the qualitative features of the phenomenological earcpotentials. The convergence of
the derivative expansion has been examined by comparingobientials generated at different
energies. We have found that the discrepancy is small inaWeehergy region (5 Ecy < 45
MeV, which indicates that the derivative expansion workst. gfuantitative applications to nuclear
physics, 2+1 flavor QCD should be used to generate the nysteantials in the light quark mass
region. By using PACS-CS gauge configurations, we have pteshto obtain 2+1 flavor QCD
results of the nuclear potentials. Qualitative featuresai@s the same except for the enhancements
of the repulsive core, the range of the attraction of thereg¢miotentials, and the strength of the
tensor potential. These nuclear potentials have been agsadtulate the phase shifts, which behave
reasonably. Although they are reasonable in a qualitagnses, their strength is not satisfactory at
all, which suggests the importance of the lattice QCD calboh in the light quark mass region.
Finally, we have applied our method to the hyperon potengach atN= andNA, for which only
a limited number of experimental information is availabbe the moment.

It is interesting to use our nuclear potentials to study thelear many body problems, which
provides a way to access nuclei based on QCD. Needless ttheag,is another direct way to
access nuclei by lattice QCD, i.e., direct calculations wélear spectrum, matrix elements, etc
[21]. These two approaches are considered to be complergeitiae former keeps a connection
to the conventional nuclear theory, while a number of forsmat and techniques have to be estab-
lished. The latter loses a connection to the conventionelean theory, while many of the existing
techniques in lattice QCD can be used. It is desirable to ofie &f these two approaches as the
situation demands. All that is certain is that the latticeB@ill provide a unique tool to study
realistic nuclei in the quite near future.
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