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1. Introduction

Our goal is to construct more accurate molecular dynamics integrators for use in Hybrid Monte
Carlo (HMC) computations for lattice quantum field theories. In particular we shall consider sym-
metric symplectic integrators whose errors are of higher order in the integration step size than those
of the leapfrog (also known as the Störmer or Verlet) method. These integrators improve the scaling
behaviour δH = k ·δτn from n = 2 to n = 4, which reduces the cost for large enough volume and
small enough fermion masses for which δτ → 0. Previous methods for constructing higher-order
integrators [1, 2] were thwarted by large values for the coefficient k; the new idea considered here
is to compute second derivatives “analytically” rather than “numerically” [3, 4].

2. Symplectic Integrators

As described in [5, 6, 7] we may define a Hamiltonian system for a gauge field by introducing
the symplectic fundamental 2-form ω ≡−d(piθi) with θi being the frame of left-invariant Maurer-
Cartan forms; this ensures that the Hamiltonian dynamics is gauge invariant. For every 0-form F
on phase space this defines a Hamiltonian vector field F̂ satisfying dF = iF̂ω , and the Hamiltonian
evolution for the system corresponds to an integral curve of the Hamiltonian vector field Ĥ for the
Hamiltonian function H. We can find a closed-form integral curve of F̂ , that is evaluate eF̂τ explic-
itly, if F depends only on the “positions” (fields) q or momenta p. This is particularly useful when
the Hamiltonian is of the form H(q, p) = S(q) + T (p) as then we can integrate the Hamiltonian
vector fields Ŝ and T̂ exactly.

3. Shadow Hamiltonians and Force Gradient Integrators

We recall the Baker–Campbell–Hausdorff (BCH) formula, which states that if A and B belong
to any (in general non-commutative) associative algebra then eAeB = eA+B+δ where δ is in the
free Lie algebra generated by A and B. Furthermore it gives an explicit expansion for δ , and
correspondingly for the symmetric product

ln
(

eA/2eBeA/2
)

= A+B− 1
24

(
[A, [A,B]]+2 [B, [A,B]]

)
+ · · · .

Using the Jacobi identity one may show that the commutator of two Hamiltonian vector fields
is itself a Hamiltonian vector field, [Ŝ, T̂ ] = {̂S,T}, where {S,T}=−ω(Ŝ, T̂ ) is the Poisson bracket
of the two 0-forms S and T . We therefore find that any integrator constructed from a sequence of
symplectic steps exactly conserves a shadow Hamiltonian H̃ obtained from the BCH formula by
replacing commutators with Poisson brackets.

As a very simple example consider the PQPQP integrator(
eα Ŝδτe

1
2 T̂ δτe(1−2α)Ŝδτe

1
2 T̂ δτeα Ŝδτ

)τ/δτ

whose shadow Hamiltonian is

H̃ = H +
(

6α2−6α +1
12

{S,{S,T}}+ 1−6α

24
{T,{S,T}}

)
δτ

2 +O(δτ
4).
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Integrator Update steps Shadow Hamiltonian

PQP e 1
2 δτ Ŝ eδτ T̂ e 1

2 δτ Ŝ T +S− δτ2

24

(
{S,{S,T}}+2{T,{S,T}}

)
+O(δτ4)

QPQ e 1
2 δτ T̂ eδτ Ŝ e 1

2 δτ T̂ T +S + δτ2

24

(
2{S,{S,T}}+{T,{S,T}}

)
+O(δτ4)

PQPQP
α= 1

6

[4, 8, 9]

e
1
6 δτ Ŝ e 1

2 δτ T̂

× e 2
3 δτ Ŝ

× e 1
2 δτ T̂ e

1
6 δτ Ŝ

T +S + δτ2

72 {S,{S,T}}+O(δτ4)

PQPQP
α= 1

2

(
1− 1√

3

)
[4, 8, 9]

e
3−
√

3
6 δτ Ŝ e 1

2 δτ T̂

× e
1√
3

δτ Ŝ

× e 1
2 δτ T̂ e

3−
√

3
6 δτ Ŝ

T +S +
√

3−2
24 δτ2{T,{S,T}}+O(δτ4)

Campostrini
PQPQPQP

[1, 2]

e
3√4+2 3√2+4

12 δτ T̂

× e
3√4+2 3√2+4

6 δτ Ŝ

× e
− 3√4−2 3√2+2

12 δτ T̂

× e−
3√4+2 3√2+1

3 δτ Ŝ

× e
− 3√4−2 3√2+2

12 δτ T̂

× e
3√4+2 3√2+4

6 δτ Ŝ

× e
3√4+2 3√2+4

12 δτ T̂

T +S

+ δτ4
34560



−(40 3√4+40 3√2+48) {S,{S,{S,{S,T}}}}
+(180 3√4+240 3√2+312) {{S,T},{S,{S,T}}}
+(60 3√4+80 3√2+104) {{S,T},{T,{S,T}}}

+(−20 3√4+8) {T,{S,{S,{S,T}}}}
+(20 3√2+32) {T,{T,{S,{S,T}}}}
+(5 3√2+8) {T,{T,{T,{S,T}}}}


+O(δτ6)

Force
Gradient
PQPQP

e
1
6 δτ Ŝ e 1

2 δτ T̂

× e
48δτ S−δτ3 ̂{S,{S,T}}

72

× e 1
2 δτ T̂ e

1
6 δτ Ŝ

T +S

− δτ4
155520



41 {S,{S,{S,{S,T}}}}
+36 {{S,T},{S,{S,T}}}
+72 {{S,T},{T,{S,T}}}
+84 {T,{S,{S,{S,T}}}}
+126 {T,{T,{S,{S,T}}}}
+54 {T,{T,{T,{S,T}}}}


+O(δτ6)

Table 1: A selection of integrators with their exactly conserved shadow Hamiltonians.

As the Poisson bracket {S,{S,T}} does not depend on momentum we can integrate the Hamil-
tonian vector field ̂{S,{S,T}} exactly, and this “second derivative” corresponds to the Force Gra-
dient just as the Hamiltonian vector field Ŝ corresponds to the “force”. The explicit form of the
shadow Hamiltonian for a variety of integrators is shown in Table 1, the simplest Force Gradient
integrator is given in the last entry.

4. Computing the Force Gradient

As shown in our previous proceedings [5, 6] Poisson brackets for gauge theories may be writ-
ten in terms of momenta pi and linear differential operators ei that provide gauge-covariant gener-
alizations of the vector fields ∂/∂qi; in particular we have {S,{S,T}}= ei(S)ei(S). The “equations
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Figure 1: Change δH in the Hamiltonian over an entire trajectory as a function of the integration step size
δτ . The dashed line indicates the value of δH which corresponds to a 75% HMC acceptance rate.

of motion” for the ̂{S,{S,T}} vector field are Ṗ = ̂{S,{S,T}}P≡−G where P≡ piT i, and we may
use the relation ei(U) =−TiU , where Ti are the adjoint generators of the gauge group, to show that
the Force Gradient vector field is the “second derivative” G = e j(S)e jei(S)T i.

If we consider a generic pseudofermion action S = φ †M−1(U)φ where φ is a pseudofermion
field, U the gauge field, and M any hermitian fermion kernel, then

ei(S) =−φ
†M−1ei(M )M−1

φ =−X†ei(M )X

where X ≡M−1φ . The Force Gradient can be computed by applying the linear differential operator
F ≡ e j(S)e j to the above equation; by the Leibnitz rule

−G =−F
(
ei(S)

)
= F (X†)ei(M )X +X†F

(
ei(M )

)
X +X†ei(M )F (X);

defining Y ≡F (X) =−M−1F (M )X , we obtain

−G = Y †ei(M )X +X†F
(
ei(M )

)
X +X†ei(M )Y.

Note that the cost of computing the Force Gradient in an HMC integrator is the inversion required
to compute Y in addition to the usual inversion needed to compute X .

5. Results

We have implemented this PQPQP Force Gradient integrator for lattice QCD with dynamical
Wilson fermions, and we present our initial results for a 164 lattice at β = 5.5 and κ = 0.1575,
which corresponds to a pion mass of mπ = 665 MeV. We used the usual even-odd preconditioning,
which does not introduce any significant complications into our formalism.
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Figure 2: Change δH in the Hamiltonian over an entire trajectory as a function of an estimate of the com-
putational cost. The dashed line again indicates the value of δH corresponding to a 75% HMC acceptance
rate.

In Figure 1 we show the change δH in the Hamiltonian over an entire trajectory as a function
of the integration step size δτ on a log-log plot. To guide the eye we have also drawn a line to
indicate the value of δH which corresponds to a 75% HMC acceptance rate. The slopes of the
lines correspond to the expected order of the integrators, and the Force Gradient integrator is more
than order of magnitude more accurate than the Campostrini integrator at any step size, indicating
that the coefficient k discussed in the introduction is indeed much smaller.

In Figure 2 we replot the same data as a function of an estimate of the cost, namely the number
of CG solutions divided by the step size. The Omelyan integrator requires two inversions of the
Wilson–Dirac operator per step, one1 for each Ŝ (P) integration step, whereas the Campostrini and
Force Gradient integrators require three inversions (one for each Ŝ and ̂{S,{S,T}}). From the
intercepts with the dashed line (75% acceptance) we find that the Force Gradient integrator is a
factor of 2.6 cheaper than the Omelyan integrator, which was up to now the preferred choice of
integrator.

6. Conclusions

Our Force Gradient integrator is cheaper by more than a factor of two even for small lattices
with fairly heavy quarks, and the benefit increases as the integration step size becomes smaller.
We expect that the integrators will be improved by tuning using measured average values of Pois-
son brackets, as described in [6]. We also note that our formalism for computing Force Gradient
integrators is compatible with all common actions, smearing, and so forth.

1As initial and final “half steps” can be combined we count each as half an inversion.
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