PROCEEDINGS

OF SCIENCE

Simulating Wilson fermions
without critical slowing down

Urs Wenger*

Albert Einstein Center for Fundamental Physics

Ingtitute for Theoretical Physics

University of Bern, Sdlerstr. 5, CH-3012 Bern, Switzerland
E-mail: wenger @t p. uni be. ch

We present a simulation algorithm for Wilson fermions basedhe exact hopping expansion of
the fermion action. The algorithm essentially eliminatégaal slowing down by sampling the
fermionic two-point correlation function and it allows sihations directly in the massless limit.
As illustrative examples, the algorithm is applied to th@&rNeveu and the Schwinger model,
the latter in the strong coupling limit.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



W Ison fermions without critical slowing down Urs Wenger

1. Introduction

Simulating strongly interacting fermions continues to baajor challenge in computational
physics. The standard procedure to deal with fermionicekgof freedom is to integrate out the
fermionic fields in order to obtain the fermion determinaetd, whereD denotes the Dirac op-
erator. However, this procedure is not unproblematic. @elemgor example a fermion interacting
with a bosonic fieldJ. After integrating out the fermion fields one obtains D&Y ) which yields
an effective action non-local in the bosonic field. The sgaddnethod is now to re-express the de-
terminant using bosonic 'pseudo-fermions’ and use the idyMonte Carlo algorithm [1] which in
essence encodes the non-locality of the fermion deterrninahe inverseD(U ). Another prob-
lem is that the standard approach suffers from critical sigwdown (CSD) towards the chiral limit.
In that limit the correlation length of the fermionic two4pbfunction diverges. As a consequence
the Dirac operatoD(U) develops very small modes and eventually the inv&de) ! becomes
ill-conditioned. Yet another problem concerns the phasgeti® which for Wilson fermions is in
general non-zero. Hence a probabilistic interpretatiathefintegration measure, necessary for any
Monte Carlo simulation, is not possible and leads to a sighlpm when an odd number of Wilson
fermion flavours is simulated.

Here we propose a novel approach [2] circumventing the abuwationed problems. It is
based on the exact hopping expansion of the fermion actienaireformulation of the fermion
system as a statistical closed loop model. We develop a atronlalgorithm which samples di-
rectly the fermionic two-point function and in this way elimtes CSD. Moreover, it allows to
specify the fermionic boundary conditions a posterioe, after the simulation, and allows simula-
tions directly in the massless limit. The approach is applie to the Gross-Neveu (GN) model in
D = 2 dimensions, to the Schwinger model in the strong couplng in D = 2 andD = 3 dimen-
sions, to supersymmetric quantum mechanics andtkel and 2 supersymmetric Wess-Zumino
model inD = 2 dimensions. In the present proceedings we concentratkeeoapplication to the
GN and the Schwinger model.

Finally, we would like to emphasise that the reformulati@séd on the hopping expansion is
not new [3, 4, 5, 6]. Mostly, however, it has been applied éggered fermions in the strong cou-
pling limit where a reformulation in terms of monomers anchelrs [7] allows efficient algorithms
[8, 9] that were subsequently applied to many interestirggesys [10, 11, 12], see also the recent
review by Chandrasekharan [13]. For Wilson fermions on tterohand the loop formulation
has been developed for the Schwinger model in the strongliogupnit [14] and the GN model
[5, 6, 15] and what we propose in [2] is just a very efficientoaihm for these loop formulations.

2. Loop formulation of Wilson fermions

We start with the reformulation @ = 2 fermionic systems involving Wilson fermions in terms
of a statistical loop gas model. We use the GN model, a prptotyr strongly interacting fermions,
as an illustrative example. The model is most naturally fdated in terms of Majorana fermions.
Employing the Wilson lattice discretisation for a Majordaemion the Euclidean Lagrange density
reads

~ 2
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whereé is a real 2-component Grassmann figdd= —%" is the charge conjugation matrix and
0,0* andd are the forward, backward and the symmetric lattice deviwatespectively. In the
continuum, the massless model enjoys a discrete chiral ggmi& — & which on the lattice
is broken explicitly by the Wilson tern%d*d. The symmetry can be restored in the continuum
by fine tuningm — m.. Further we note that a pair of Majorana fermions may be dened
as one Dirac fermion, i.e) = 1/v/2(& +i&), T=1/V2(& —i&))€, exposing theD(2N)
flavour symmetry explicitly. Since integrating out Majosafermions yields the Pfaffian of the
antisymmetric Dirac operator, the model withl 2Majorana fermions is equivalent 8 Dirac
fermions through the identityPfD)?N = (detD)".

At non-vanishing coupling # 0 one usually employs a Hubbard-Stratonovich transfoomati
and introduces the scalar fietdD £T€°€. With M(X) = 24+m+ o(x) andP(£u) = 3(1F y,) the
action then becomes the sum of monomer and hopping terms

Sn = %ZE TOEM(X)E (x) —XZ“E T)EP(K)E (x+f1). (2.2)

Using the nil-potency of Grassmann elements one can nowneXi@ Boltzmann factor and per-
form an exact hopping expansion for the Majorana Wilson fen®[15]. We emphasise that this
can be done for any fermionic theory (bilinear in the ferniidields). At each site, the fields' ¢
and¢ must be exactly paired in order to give a non-vanishing daution to the path integral,

~\\b
[ 78 [T (M9/2€T (9% €00)™ [ (€7 o Plue () (2.3)
Xl
where the occupation numbergx) = 0,1 for monomers and, (x) = 0,1 for bonds (or dimers)
satisfy the constraint

1
+3 % bu(x) = 1. (2.4)

This constraint encodes that only closed, non-intersggaths survive the integration and we end
up with a closed loop representation of the partition furctin terms of monomers and dimers,
i.e.Z=73,w({). The weightw of each loop/ can be calculated analytically [5, 6, 15, 16] yield-
ing |w(¢)| = 2-%? wherec is the number of corners in the loop, while the phaseotf) de-
pends on the geometrical shapefotn D = 2 dimensions and for a torus geometry of the lattice,
signw(¢)] € {—1,1} depends on the boundary conditions (Bf;)c {0,1} and on the numben,,

of loop windings in directioru,

signw(¢)] = (—1)w &) (2.5)

As a consequence the overall sign of a given configuratioemtigponly on the fermionic BC and
the total winding numbelr= {I,;} (modulo 2).

If we separate all configurations into the equivalence ess; where the subscripts j
specify the total winding numbetg (modulo 2) in the two directions, then the partition funatio
summing over all non-oriented, self-avoiding loops witlsiige weight,

Z= 5% [0[[IMKX), £ € LoUL10ULnuU. 21, (2.6)
{t}ez Xl
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Figure 1: N = 1 Majorana GN model on a 128attice. Left: Comparison of simulation results (symbols)
and analytic calculations (dashed lines) for the partifiorction ratiosZ /Z. The inset shows the repro-
duction of the zero mode dt?o atm; = 0. Right: Integrated autocorrelation time of the condemsathe
critical pointm. = 0 fitted by1a ~ L* with z= 0.31(4). The inset shows a fit to a logarithmic dependence
onL.

represents a system with unspecified fermionic BC whileesgstwith specific fermionic BC can
be constructed a posteriori by taking the signs of each eessrding to

1
Z§=2Zg— 5 (—1)Zy. (2.7)
i,]=0

Finally we note that if one considel$ > 1 Majorana flavours the occupation numbetd, are
decorated by the flavour indexand one considefd different loop flavours. The monomer weight
M(x) depends on the local fermion densjty, m“(x) only and one ends up with a model of locally
coupled loops.

In the Schwinger model the hopping term contait$(a) phase coming from the gauge field
@ (x), and the non-oriented (Majorana) bonds carry an addititabr [J cosh{ ¢, (x)). More-
over the gauge field introduces an interaction between thavajorana flavours proportional to
+sinh(¢y, (X)), These additional factors introduce a sign problem sincé &sop can now have an
arbitrary sign. However, in the strong coupling limit, threotflavours are bound together. In the
present formulation it means that two different Majoranaple lay on top of each other and the
resulting double loop describes the world line of the bosdinund state. It also turns out that
all the signs cancel in a non-trivial way and so the bosoioisds realised explicitly. Eventually
we end up with a model of non-oriented loops [14] in which b# toop and monomer weights
are squared compared to the GN model. Note further that.&y® longer applies because the
fermionic BC have no impact on the BC of the correspondingobi@sbound state — instead the
relevant partition function is the one where all topologidasses contribute positively, i.B.

3. Simulation algorithm for loops and strings

A standard procedure to simulate loop gas models as the @ueilakd above is to perform
local loop updates involving plaquette moves only [17, XBhe problem with such an algorithm
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Figure 2: The Schwinger model in the strong coupling limit. Left: Rayh function ratioZ?O/Z on various
lattices. Right: Determination of the critical poimg = —0.68650627) on the largest lattice with = 512.

is that it can not change between the topological clasggs.%10,-%01,-211. Moreover, if the
correlation length of the system grows large these algosthecome highly inefficient and suffer
from CSD. Our proposal [2] (subsequently worked out in [1B]lows the one of Prokof'ev and
Svistunov [20] and enlarges the configuration space by openidnic strings. In the GN model
an open string corresponds to the insertion of a Majorammiéer pair{& (x), & (y)%’} at position

x andy into the path integral, and the open string samples dird¢ledycorrelation function

G(xy) = [ 7Ee MEXEW)TE . (3.1)

This is the reason why CSD is eliminated: configurations qaated on all length scales up to
O(¢) where is the correlation length corresponding to the fermionio foint function. As

a conseqguence the update remains efficient even at a cptigatl where the correlation length
diverges. Contact with the partition functioig;, is made each time the open string closes and this
provides the proper normalisation for the expectationevalithe 2-pt. function(& (x)& (y)T€)z =
G(x,y)/Z, or any other observables. In practice, the ends of the opey sire updated with a
standard local Metropolis or heat bath procedure [2]. Simdeas have been around for a long
time in various other contexts [20, 21, 22] — what is new hettbé practical application to Wilson
fermions and the demonstration that CSD is essentiallyireditad.

4. Absence of critical slowing down

Before investigating the efficiency of the algorithm, we adestrate its correctness by compar-
ing simulation results with analytically know expressioRsr this purpose we use the= 1 Majo-
rana GN model. This model is essentially a free fermion maddlcan be solved exactly by calcu-
lating Pfaffians in momentum space. In the left plot of Figlikge show the results for the partition
function ratiosZ 4, /Z on a 128 lattice from 2M closed path configurations (Symbols) corepdo
the exact results (dashed lines). The inset shows the catftiZ® = Z 4, — Z, — Z4, — 2,
which has a zero mode at the critical poing = 0. The algorithm is indeed able to reproduce the
zero mode without problems. In order to investigate theiefiicy of the algorithm at the criti-
cal point we measure the condens{a&ér%azf. The right plot of Figure 1 shows the integrated
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Figure 3: The Schwinger model in the strong coupling limit. Left: Fensize scaling ong/Z for a second
order phase transition in the universality class of thegsitodel. Right: Integrated autocorrelation time
of the condensate at the critical poimg fitted by 74 ~ L with z= 0.25(2). The inset shows a fit to a
logarithmic dependence dn

autocorrelation timea of the condensate as a function of the linear systemlsiZée dynamic ex-
ponentz relevant for CSD, i.eTa ~ L, turns out to be ~ 0.31(4). A dependence logarithmically
onL can also be fitted th > 32 yielding—14.2(2.5) + 7.1(6) In(L) with x?/dof = 0.18.

Next we consider the Schwinger model in the strong couplimit Ig — o as a non-trivial
example for strongly interacting fermions. In the left ppdFigure 2 we show the partition function
ratio Z?O/Z on various lattices up th = 512. As in the Majorana GN model we find a zero
of the partition function which depends only very little dretextent of the lattice. We can use
Z?O(mc) = 0 as a definition for the critical point;. It can be determined by a linear fit and
we obtainm; = —0.68650627) (cf. right plot in Figure 2) from our simulations on the lasge
lattice withL = 512. Further improvement could be achieved by employingdsted reweighting
techniques as done in [23] where they obtaingd= —0.68594). These calculations indicated a
second order phase transition in the universality clasti@fising model (with critical exponent
v ~ 1). Our results in the left plot of Figure 3 now confirm this gnaonstrating that the partition
function ratioszg°/Z as a function of the rescaled mass—m)L with v = 1 beautifully collapse
onto a universal scaling curve. The efficiency of the alponitand the fact that CSD is essentially
absent is demonstrated in the right plot of Fig. 3 where wevdhe integrated autocorrelation time
Ta Of the energy as a function of the linear system &ia¢ the critical pointn=mc. The functional
dependence oh can be well fitted x?/dof = 1.28) by 1 ~ L? all the way down to our smallest
system sizé. = 8. We obtaire = 0.25(2) which is consistent with just using the largest two system
sizes. The autocorrelation time may also depend logardligi on L and a fit toL > 32 yields
—13.8(1.9) +6.6(4)In(L) with x?/dof = 1.00. In any case it is an amazing result that our local
Metropolis-type update appears to have a dynamical dritigaonent close to zero.

5. Conclusions

In conclusion, we have presented a new type of algorithm fdsdf¥ fermions in two di-
mensions. It relies on sampling directly 2-point corr@atfunctions and essentially eliminates
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critical slowing down. We have successfully tested our @dlgm on the Majorana GN model and
on the Schwinger model in the strong coupling limit and fouaeharkably small dynamical criti-
cal exponents. The algorithm definitely opens the way to kitatefficiently generic loop models
(with positive weights) in arbitrary dimensions, in paudii@r the GN model with any number of
flavours, the Thirring model, the Schwinger model and QilXhe strong coupling limit, as well
as fermionic models with Yukawa-type scalar interactidke theN = 1 and 2 Wess-Zumino mod-
els, all with Wilson fermions.
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