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We present a novel method to compute the overlap Dirac operator at zero and nonzero quark
chemical potential. To approximate the sign function of large, sparse matrices, standard methods
project the operator on a much smaller Krylov subspace, on which the matrix function is computed
exactly. However, for large lattices this subspace can still be too large for an efficient calculation
of the sign function. The idea of the new method is to nest Krylov subspace approximations by
making a further projection on an even smaller subspace, which is then small enough to compute
the sign function efficiently, and this without any noticeable loss of numerical accuracy. We
demonstrate the efficiency of the method both on Hermitian and non-Hermitian matrices.
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1. The overlap operator and the sign function

In this contribution we present an improved method to compute the sign function of a large
sparse matrix, as necessitated by the overlap Dirac operator in lattice QCD. More details and results
can be found in Ref. [1]. The new method applies to Hermitian and non-Hermitian matrices and is
therefore usable in QCD simulations at both zero and nonzero quark chemical potential.

The overlap operator introduced by Neuberger and Narayanan [2, 3] and extended to nonzero
quark chemical potential µ by Bloch and Wettig [4] is defined as

Dov(µ) = 1+ γ5 sgn(γ5Dw(µ)) , (1.1)

with Wilson-Dirac operator Dw(µ) and Wilson mass satisfying −2 < mw < 0. The quark chemical
potential is introduced in the Wilson-Dirac operator as prescribed by Hasenfratz and Karsch [5].
The matrix γ5Dw is Hermitian when µ = 0, but becomes non-Hermitian when µ 6= 0, such that the
overlap operator requires the computation of the sign of a general complex matrix.

For a generic function f and a diagonalizable matrix A = U diag(λ1, · · · ,λn)U−1 ∈Cn×n, with
eigenvalues λi and eigenvector matrix U = [u1| . . . |un], the matrix function f (A) is given by the
spectral definition

f (A) = U diag( f (λ1), . . . , f (λn))U−1. (1.2)

In the non-Hermitian case the eigenvalues are generically complex and the sign function is defined
as sgn(z) = sgn(Re(z)) [6].

2. Approximate Krylov subspace solution

For physically relevant lattice sizes the spectral definition (1.2) cannot be applied directly as
the diagonalization of A becomes too expensive in terms of CPU time and memory. A solution is to
compute f (A)x, for x∈Cn, using a Krylov subspace approximation, rather than f (A), as the results
of such operations are typically needed by iterative solvers for linear systems and eigensystems.

To approximate f (A)x in the Krylov subspace Kk(A,x) = span(x,Ax, . . . ,Ak−1x) we first con-
struct a basis for the subspace. In the Hermitian case the Lanczos method generates an orthonormal
basis Vk of Kk(A,x) using short recurrences. In the non-Hermitian case an orthonormal basis can
be constructed using the Arnoldi algorithm. However, as the method uses long recurrences, it be-
comes too expensive for large Krylov subspaces. Instead, we will use the two-sided or biorthogonal
Lanczos method (2sL), where the orthogonality of the basis is given up in order to recover short
recurrences. Two short recurrence relations are used to construct mutually orthonormal bases Vk

and Wk, i.e., W †
k Vk = 1k, for the Krylov subspaces of A and A†, respectively.

With these bases the Ritz approximation to f (A)x is computed using

f (A)x≈Vk f (Hk)V
†
k x = ‖x‖Vk f (Hk)e

(k)
1 , (2.1)

where we chose v1 = x/‖x‖, e(k)
1 is the first unit vector of Ck, and the k× k Ritz matrix Hk is

defined as V †
k AVk and W †

k AVk, for the Hermitian and non-Hermitian case, respectively. The virtue
of the Krylov subspace approximation is that a good accuracy can be reached for k� n, such that

2



P
o
S
(
L
A
T
2
0
0
9
)
0
2
5

A nested Krylov subspace method for the overlap operator Jacques C.R. Bloch

the computation of f (A) is replaced by that of f (Hk), which is of much smaller size. For the sign
function, sgn(Hk) is typically computed using the Roberts-Higham matrix iteration [7]:

Sn+1 =
1
2
(Sn +S−1

n ) with S0 = A, (2.2)

which converges quadratically to sgn(A). The combination of Eq.(2.1) with Eq. (2.2) to compute
sgn(Hk) will be called the non-nested method, in contrast to the nested method introduced in Sec. 3.

Some additional care has to be taken when using the approximation (2.1) for the sign func-
tion. If A has eigenvalues close to the discontinuity along the imaginary axis, the Krylov subspace
would have to be taken very large to achieve a good accuracy with Eq. (2.1). This can be re-
solved by treating these critical eigenvalues exactly using deflation [8]. Assume that we have
computed m such critical eigenvalues λi with their corresponding right and left eigenvectors ri and
li, then the function evaluation is rewritten as f (A)x = Rm f (Λm)(L†

mx)+ f (A)(I−RmL†
m)x, where

Λm = diag(λ1, . . . ,λm), Rm = [r1| . . . |rm] and Lm = [l1| . . . |lm]. The first contribution to f (A)x is
computed exactly using the eigensolutions for the deflated eigenvalues, while the second contribu-
tion is approximated using the Krylov subspace approximation (2.1).

The non-nested approximation has been implemented and tested on configurations ranging
from 44 to 163× 32 lattices [8 – 10]. The performance of the method is illustrated for a typical
84 configuration in Fig. 1. As expected, the convergence is generically faster and smoother in the
Hermitian case (Lanczos) than in the non-Hermitian case (2sL), see Fig. 1a. More relevant for the
current study is Fig. 1b which depicts the CPU times used in both cases. The figure highlights
a serious issue with the non-nested method, as a bottleneck in the numerical computation can
clearly be identified, in both the Hermitian and non-Hermitian case. The difference between the
full and dashed lines corresponds to the time needed to compute sgn(Hk) using the iteration (2.2).
Evidently, this computation takes up a substantial amount of the total CPU time, as the O(k3)
complexity makes the Roberts-Higham iteration overly expensive for large Krylov subspaces. In
this talk we will present a new method which alleviates this problem by computing sgn(Hk)e

(k)
1 of

Eq. (2.1) using an additional Krylov subspace level.
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Figure 1: Accuracy versus (a) Krylov subspace size (left) and (b) CPU time (right) for a typical 84 config-
uration in the Hermitian (µ = 0) and non-Hermitian (µ = 0.3) cases, with deflation gap ∆ = 0.055. In the
right panel the full lines show the total time required to compute sgn(A)x, while the dashed lines give the
time needed to build the bases in the Krylov subspaces.
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3. Nested Krylov subspace method for the sign function

The idea is to approximate the vector sgn(Hk)e
(k)
1 of dimension k in a smaller, nested Krylov

subspace K`(Hk,e
(k)
1 ) of dimension ` using the approximation (2.1), with A→ Hk and x→ e(k)

1 :

sgn(A)x≈ ‖x‖Vk sgn(Hk)e
(k)
1 ≈ ‖x‖VkV` sgn(H`)e

(`)
1 , (3.1)

where sgn(H`) is computed using Eq. (2.2). As it stands, Eq. (3.1) does not improve the efficiency
of the original method because the inner Krylov subspace K`(Hk,e

(k)
1 ) only contains information

coming from the `× ` upper left corner of Hk, due to the tridiagonal nature of Hk and the special
source vector e(k)

1 . Therefore, the size of the inner Krylov subspace has to be chosen `≈ k in order
to achieve the full accuracy of the outer Krylov subspace, and nothing has been gained.

There is, however, a way to circumvent this problem and make the idea work. We observe that

sgn(A) = sgn(A+A−1), (3.2)

since the eigenvectors of both arguments are the same, and the transformation does not change the
sign of the eigenvalues, i.e.,

sgn
(

z+
1
z

)
= sgnRe

(
z+

1
z

)
= sgnRe

(
z+

z∗

|z|2

)
=

(
1+

1
|z|2

)
sgnRe(z) = sgnz , (3.3)

for z ∈ C. Based on the property (3.2) we introduce a preconditioning step Hk → Hk + H−1
k in

Eq. (2.1), which enables us to use the nested approximation (3.1) with inner Krylov subspace
K`(Hk + H−1

k ,e(k)
1 ) instead of K`(Hk,e

(k)
1 ). As we will see in Sec. 4, the nested approximation

with preconditioning step works well with `� k, i.e., there is no noticeable loss in accuracy even
after reducing the Krylov subspace size substantially. This increased efficiency can be understood
by noting that the transformation Hk → Hk + H−1

k improves the condition number by a factor ten,
approximately. This is illustrated in Fig. 2 showing the spectra of Hk and Hk +H−1

k for the Hermi-
tian case. Clearly, the preconditioning step considerably widens the gap around the origin, causing
the improvement in condition number.
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Figure 2: Eigenvalue distributions of Hk (top) and Hk +H−1
k (bottom) for a 64 lattice with k = 1024.
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Figure 3: Convergence of the nested method for an 84 lattice in the Hermitian case (deflation gap ∆ = 0.055).
The blue line shows the accuracy ε of the non-nested approximation versus the outer Krylov subspace size
k. The vertical line picks a value for k, here k = 1536, corresponding to a desired accuracy. Finally, the red
line shows the accuracy of the nested method as a function of the inner Krylov subspace size ` for fixed k.

4. Numerical results

In this section we show some preliminary numerical results for the nested Krylov subspace
method. The gain in efficiency of the method is characterized by the smallest value of `/k for which
no relevant loss of accuracy occurs. This is illustrated in Fig. 3, which shows the convergence of
the nested method. The crucial feature is that, for fixed k, the accuracy of the nested approximation
remains optimal over a very large range in ` until the error eventually blows up when the inner
Krylov subspace becomes too small. From the figure one observes that ` can be chosen about ten
times smaller than k without affecting the accuracy of the approximation. Fig. 4 illustrates how this
reduction translates in a gain in CPU time. For fixed k, the inner Krylov subspace size ` is varied
and the corresponding accuracy and CPU time can be read from the figure. The large gain in CPU
time achieved when reducing ` is due to the O(`3) cost to compute sgn(H`). It is remarkable that
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Figure 4: Gain in CPU time of the nested method for an 84 lattice in the Hermitian case (left) with k = 1536
(∆ = 0.055) and the non-Hermitian case (right) for µ = 0.3 with k = 1600 (∆ = 0.11). The red line shows
the accuracy ε(`), for a fixed outer Krylov subspace size k. The total CPU time used by the method is
given by the full blue line, while the horizontal dotted line represents the time needed to construct the outer
Krylov subspace. The difference between both corresponds to the time needed to compute sgn(H`) using
the Roberts-Higham iteration and is of order O(`3). The vertical band shows the range of optimal `.
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there is a region of `, given by the vertical band, where the accuracy is still maximal but where the
computation time of sgn(Hk)e

(k)
1 is negligible. This makes the nested method extremely efficient,

at least for the lattice sizes considered in these preliminary tests.

To explore the employability of the method for realistic lattice calculations it is useful to
investigate how the algorithm scales with the lattice volume. This is illustrated in Fig. 5. Fitting the
CPU time gives an approximate volume dependence t ∼V 1.2 for the Hermitian case and t ∼V 1.4 for
the non-Hermitian case. In this context we also compare the efficiency of our new method with the
rational approximation methods, which are the best methods currently on the market, see Fig. 6. For
the Hermitian case the nested method performs slightly better than the Zolotarev method. However,
the difference is not significant and conclusions may depend on the details of the implementation
(especially since the nested method is sometimes used in double pass mode, depending on the
available hardware, to avoid storage problems for large lattices [1]). For the non-Hermitian case,
where we compare with the rational approximation method presented in Ref. [10], the conclusion is
unambiguous and the nested method is by far better than the rational approximation. This is caused
by the lesser efficiency of the rational approximation in the presence of complex eigenvalues [10].
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Figure 5: Scaling with matrix size: CPU time versus lattice volume for the Hermitian case (left) and non-
Hermitian case with µ = 0.3 (right) for three different deflation gaps: 0.025, 0.5 and 0.1. The requested
accuracy is ε = 10−8. The dashed lines represent double pass calculations [1].

1000 10000 100000
lattice volume

0.1

1

10

100

1000

CP
U

 ti
m

e

44

64

84

104

163x32ε = 10-8

Zolotarev nested

gap=0.05

μ=0

1000 10000
lattice volume

1

10

100

1000

CP
U

 ti
m

e

Neuberger

nested

ε = 10-8

44

64

84

104

gap=0.05

μ=0.3

Figure 6: Comparison of the CPU time used by the nested method and rational approximation methods: For
the Hermitian case (left) we compare the nested method with the Zolotarev approximation [11], for the non-
Hermitian case (right) we compare with the Neuberger approximation computed with a multishift, restarted
FOM method [10]. The requested accuracy is ε = 10−8 and the deflation gap is ∆ = 0.05.
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5. Summary and outlook

The Ritz approximation to the sign function slows down dramatically when the Krylov sub-
space grows large. We therefore developed an improvement based on nested Krylov subspaces,
which resolves this problem and expedites the computation of the sign function for Hermitian and
non-Hermitian matrices, without affecting the accuracy of the approximation. Moreover, the new
method turns out to be a worthy alternative to state-of-the-art rational approximation methods.
More details about the nested method can be found in Ref. [1].

Future developments will include the parallel implementation and benchmarking of the nested
method, its incorporation in hybrid Monte Carlo algorithms for dynamical simulations with overlap
fermions, and the investigation of the applicability of the nested method to other matrix functions.
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