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Moving topological charge over the Great Wall in the
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With highly improved lattice actions and increasing lattice sizes the problem of accurate sampling
of the topological sectors of the QCD vacuum has become more difficult. A possible solution is
presented which enhances the appearance of a hypercube sized dislocation in a controlled manner.
This dislocation can then grow into a topology changing instanton. The effect of this perturba-
tion of the lattice action is removed in measurements by adjusting the Boltzman weight by an
appropriate reweighting factor. The method and initial tests are discussed.
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Moving topological charge

1. The problem with improved actions

The 21st century has seen exciting advances in lattice gauge theory, both in terms of com-
puting power, which has allowed simulations with very large (Vol. ∼1004) lattices, as well as the
development of highly improved actions which suppress lattice artifacts and produce smooth fields.
However a drawback of these developments is that they suppress configurations which tunnel be-
tween topological sectors of the QCD vacuum, so that the autocorrelation (in monte carlo time) of
the topological charge becomes extremely long, or in some cases such as domain wall fermions,
infinite. These simulations then effectively sit in one topological sector. While new instantons still
appear and disappear they occur mostly in +/- pairs such that the net topological charge does not
change.

The root of this problem is that lattice simulations use fixed boundary conditions so that, in
principle, the topology of the gauge field is fixed. In practice, instantons can appear on the lattice
via a singular configuration (or a smooth configuration with a singular gauge transformation)—a
dislocation. If this singularity is located in the interior of a hypercube, the links of the lattice gauge
field will be finite, but the periodic configuration will have non-zero topological charge. In a monte
carlo update with say, the Wilson gauge action, these objects are easily generated, and facilitate
tunneling between topological vacua. Improved actions and reduced lattice spacings suppress the
occurance of local singularities in the gauge field configuration and thus reduce the occurance of
these objects.

There are three main approaches to dealing with this problem:

1. Ignore the issue, as is done widely.

2. Understand the effect of fixed topology on simulations;
for example, [1] and [2].

3. Develop new updating algorithms which overcome the problem
as in [3] and [4].

2. A modest proposal

In [5] a method was introduced which addressed this issue in two dimensional QED, the
Schwinger Model. The difference between the topological transition rate with and without this
modification is shown in Figure 2. As can be seen, the algorithm was quite effective in 2-D QED.

The algorithm1 works as follows. We wish to enhance the possibility of tunneling to a different
topological sector of the vacuum by the appearance of an ultralocal gauge object. Since tunneling
is achieved via configurations with non-zero topological charge, we construct an algorith which
increases the likelihood of a hypercube (plaquette in the case of 2D QED) that carries topological
charge 1/2. Other fluctuations of in the gauge field will move the configuration over the barrier or
perhaps not, randomly.

Since topological charge in 2D QED is simply Q = 1/2π
∫

dx2Fµν , we want to induce a
sphaeleron (Q = 1/2) configuration which has all (or most) of its charge density, q(x) = Fµν ∼ π

1the idea was that of Ph. de Forcrand

2



P
o
S
(
L
A
T
2
0
0
9
)
0
2
6

Moving topological charge

Figure 1: Top: Normal updates with R-algorithm updates, Bottom: Updating with modified action

Figure 2: Move the configuration halfway to the next topological sector

at one site. Such a plaquette has links which “wrap” halfway around the group manifold of U(1) as
shown below.

This is accomplished by modifying the gauge action S = Sg +∆S

∆S =−∑
x

α exp
[
−

( |Fµν(x)|−π )2

2θ 2
0

]
δx,x0 (2.1)

where α and θ0 are constants. x0 is the site where the plaquette angle is already closest to π . This
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Moving topological charge

Figure 3: A half-winding plaquette configuration in 2D QED.

then, enhances–in a controlled way–the probability that the already-largest plaquette increases to
become a |Q|= 1/2 site.

This modification to the action is compensated by reweighting observables to remove the mod-
ification to the Yang-Mills action.

〈O〉corrected =
〈
Oeβ∆S

〉

Detailed Balance

While x0 may vary from one configuration to the next, the prescription assigns a unique action
to each configuration. Suppose we start from configuration A with maximum plaquette is at xa. The
update evolves to configuration B whose maximum plaquette is at xb, The intermediate momenta
at the midpoint, p(A), are functions of the coordinates A. The update in Monte Carlo time, t, looks
like this:

A,xa → p(A) → B,xb

t = 0 t = 1/2 t = 1

Starting from B and reversing Monte Carlo time looks like this:

A,xa ← p(B) ← B,xb

t = 0 t = 1/2 t = 1

Again, reversing the momenta at t = 1/2 returns the configuration to its starting place, B. Thus the
molecular dynamics is reversible. As long as the integration method of the Hybrid Monte Carlo
update uses a midpoint velocity method (as does the Leap Frog and most other intergrators), this
procedure leads to reversible molecular dynamics ensuring detailed balance.

The procedure enhances a local lattice artefact, which acts like a “saddle point” between topo-
logical sectors

3. Generalization to SU(N)

In 2D-QED, defining a single plaquette whose links wind halfway around gauge group, U(1),
is straightforward; an example is shown in Fig. 3). The comparison of the topological charge
densities between 2D-U(1) and 4D-SU(N) gauge theories,
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2D-U(1) 4D-SU(N)
q(x) = Fµν(x) q(x) = Fµν F̃µν(x)

Q = 1
2π

∫
dx2Fµν Q = 1

32π2

∫
dx4Fµν F̃µν(x)

Leads to the following non-Abelian generalization of ∆S from eq. 2.1 valid for SU(N).

∆S =−∑
x

α exp
[
−( |q(x)|−16π2 )2

2θ 2
0

]
δx,x0 (3.1)

The next issue is what operator to choose for q(x). Since we want a very local object to be
induced, we should not use a sophisticated definition which extends beyond a hypercube. The
original “twisted plaquette” definition of q(x), a straightforward transcription of Fµν F̃µν(x) with
plaquettes, Ref. [6], is based at a lattice site as shown in Fig. 4. While this operator might work

Figure 4: Site-centered topological charge density represented by the “twisted plaquette” of Ref. [6].

(it was not tested in this study), we seek an operator centered on the dual lattice whose boundary
is a hypercube, analogous to the method used in 2D-QED. Such a hypercubic topological charge
density operator was used by Vecchia, Fabricius, Rossi, and Veneziano in [7] and is defined by

q(x) =
48

∑
p=1

(−1)pWp, p = perm(x̂, ŷ, ẑ, t̂). (3.2)

Wp is an eight link Wilson loop that winds around the hypercube, changing direction at each site
according to a permutation of the directions x̂, ŷ, ẑ, t̂ for the first four links, with the same directions
for the last four links. One of the 48 Wp is shown schematically in Fig. 5.

Figure 5: An example path contribution from the hypercube-centered topological charge density of Ref. [6].
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With the addition of ∆S in eq. 3.1 to the action, the Hybrid Monte Carlo update of links is as
usual, except for links which are part of the hypercube H0 at x0 which has the maximum absolute
value of topological charge density, |q(x)|. Links that are part of this hypercube have an additional
“force” coming from ∆S

∂∆S
∂Uµ(x)

= 2α[|q(x)|−16π
2]exp

{
− [ |q(x)|−16π2 ]2

2θ 2
0

}
× ∂ |q(x)|

∂Uµ

∣∣∣∣
x∈H0

. (3.3)

In addition to the usual staples, the gauge force at these sites has 7-linkstaples from the boundary
of the maximal q(x) hypercube. An example of one of these contributions to the update of the red
link is shown below in green in Fig. 6.

Figure 6: One of the “extra staples” contributing to the gauge force in the HMC update of the link shown in
red. These staples are only added to the update for links in the hypercube with maximal topological charge
density at x0.

A summary of the update algorithm is as follows.

• Compute the topological charge density, q(x), as defined in eq. 3.2.

• Find the hypercube with has maximal |q(x)|. This defines x0, the base site of the maximal
hypercube H0.

• Update links as usual via HMC algoritm. For links which are part of H0, the gauge force has
an additional contributuions as shown in eq. 3.3 and Fig. 3.

4. Tests

Tests of this algorithm are underway, with two observations so far. First, the non-Abelian
HMC algorithm does enhance the probability that some hypercube has increased topological charge
density. This is shown in (the admittedly, busy) Fig. 7. What is shown is the maximal topological
charge at hypercube H0 versus update sequence number for 100 updates. Increasing the value of α

in eq. 3.1, the weight of ∆S, from 103 to 105 increases |q(x)|max. The average value of |q(x)|max for
100 updates is shown as a horizontal line. Red: α = 103, Green: α = 104, and Blue: α = 105.

The second observation is that the algorithm seems to be rather sensitive the both the param-
eters α , and θ0 in ∆S. In many cases, updates do not thermalize the configurations. In 2D-QED
this sensitivity was mild; in that case, a configuration with small q(x) has a ∆S∼ exp(π) = 20, for
generic α = 1 and θ0 = 1/2. In the non-Abelian case however, a smooth configuration (q(x)∼ 0)
gives a ∆S∼ exp(16π2) = e158 ∼ 1068. Thus, other functional forms of ∆S which enhance a hyper-
cubic dislocation but are not so strongly peaked need to be explored.
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Figure 7: The maximal topological charge versus update. Increasing the value of α in ∆S from 103 to 105

increases |q(x)|max. The average value of |q(x)|max for 100 updates is shown as a horizontal line. Red: α =
103, Green: α = 104, and Blue: α = 105.
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