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1. Introduction

1.1 Theproblem

Lattice field theories can be studied numerically by Monte Carlo simulations. altoeyto address
non-perturbative problems from first principles, and for most of theribe the lattice provides the
only known non-perturbative definition. The mass of the lowest states inea ghannel can,
for instance, be extracted from the Euclidean time-dependence of alsuitabpoint correlation
function. Very often, however, the statistical error of the Monte Cartonege grows exponen-
tially with time, and in practice it is not possible to find a window where statisticakgatematic
errors are both under control. The problem is easily explained by loakitige states contributing
asymptotically in time to the two-point function and to its variance. Whenever tegygmnf the
asymptotic state in the variance is smaller than twice that in the two-point functemoike to
signal ratio is going to grow exponentially in time [1, 2]. The standard MontéboGgoproach fails
basically because for any given field configuration all asymptotic statdsedheory are allowed
to propagate in the time direction, regardless of the quantum numbers ofulfee $elds. Their
contributions disappear in the Monte Carlo average for the two-pointitmbut sum up in the
noise. As shown in the following subsection, the issue is already theresfore system such as
the harmonic oscillator. We use the latter to introduce the basic ideas of the nilethedhs pro-
posed in [3, 4], a “symmetry-constrained” Monte Carlo, and to show hewaids the exponential
increase of the signal-to-noise ratio.

1.2 The case of the har monic oscillator

We consider the one-dimensional harmonic oscillator on the lattice. We remallahfew basic
eguations. More details can be found in [3] to which we refer for anyxpiaéned notation. The
system is described by the Hamiltonian

~ P 1 20

H=_—4+V(X) with V(X)=_-mw<=X. 1.1

o TV () ®=3 (L1)

This operator is invariant under parity transformations, therefore itisiges can be classified
according to a parity quantum numbet ér —). We label the corresponding energy levelssas
andé"j‘ respectively. The transfer operator between two consecutive time slidefined as

~ o 62 o
G —e V(%) e—a%n e—gV(x)

) (1.2)
an its matrix elements in the coordinate basis
~ m \1/2
(Xnt1| T [%n) = (ﬁ) Tnt1n (1.3)
can be computed explicitly
Thiin =€ abnetn (1.4)
with ,
m [ Xni1— X V(% V (Xn
Lniin = Z (%1, %) = 2 ( n+1a n> + ( ;Jrl) + (2 ) . (1.5)
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The statistical variance associated to the two-point correlation fun¢tieg) (interpolating
parity odd states) is

2 _

o <x| xk) (X xk) (1.6)

and, at asymptotically large time separations, the signal-to-noise ratio casihe@mmputed in
the underlying quantum field theory
(X1 %) _ (& IKIED1P - S &)
o [&1R&)]

=Ky (1.7)

The ratio decreases exponentially in time, as announced. As we will desctibe following the
problem here can be solved by introducing the “sign” and the “modulesield
We define the complete set of parity eigenstates

1 A
X,t)=—(x)£|—%x)), DX, +) = +|X,£) . 1.8
|>ﬁ(|>|>) X, £) = %%, £) (1.8)
The invariance of the Hamiltonian under parity implies
R o\ 1/2
ol Thns = () Toands, 1.9)
with
1 _ _
Tns+1n = —e a/\n-¢—1n {ea/\m—l,n +S€7M”+1=”} , (110)
: 2
i 1
/\n+1n — é{g(—XnJ’_l,Xn)ig(Xn_’_l,Xn)} 5 (111)

and the functional integral can be written as

Z:S;[ZS, /rden S in, (1.12)

whereN is the extent of the lattice. We further define
Thin=¢€ 8lniin — g ®\nein cosh aNyi1nts (1.13)

and cast the functional integrals in the form

+:/N|jjd>qqe3+, /l‘dene Htanh{a/\mlm} (1.14)

whereS" =ayN-, 1Ln++1n The path integral is thus rewritten as a sum of two functional integrals
giving the contribution from parity even and odd states respectivelyh Edegrand is a product
of transfer matrix elements between quantum states with definite parity. Theaiwbeorrelation

function readsK < I)

1 N-1 -1
(XX = —/ dx,e S {x [ tanh{aA ; Ix
2! N L

N-1 k-1
+ [ tanh{ai g g mbxx [ tanh{a/\@m}} : (1.15)
m=| m=0
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Figure 1. Left: two-point correlation function versus the time distat/a of the sources. Right: errors
on the correlation function as obtained with the multi-lesdgorithm (SCMC) and with the standard path
integral Monte Carlo (PIMC).

Each term is now the expectation value of a factorized observable in arsgstecribed by the
actionS*. The expression reminds of the factorized form used for the corredaRolyakov loops
in the pure gauge theory in [5]. As done there a multi-level integration scltamée introduced
for the system and the observable discussed here. The key ingreatiestsh-lattice averages, i.e.
averages computed by numerically integrating over the degrees of ineedothick time-slice of
the lattice with the variables at the boundaries kept fixed, and the reeuedations, which allow
to obtain averages on large thick time-slices as the product of those on soma&teintegrated over
their boundaries configurations. Both properties are due to the localityeaddtion. We do not
repeat here the details concerning the construction of the algorithm, thdyecfund in [3] but
rather report on the main results.

In the left plot of Figure 1 we show the two-point correlation function cotegwon a lattice
with N = 64 points, with statistical errors being smaller than symbols. The error (S9@\vBown
on the right plot of the same Figure. The signal-to-noise ratio is depleteekpested, (only)
inversely proportional to the time distance of the sources. For comparisio@ game plot it is also
shown the statistical error obtained with a standard Monte Carlo proc@eliMi€) which needed
roughly the same CPU time. It is clear that with our strategy the statistical ereapanentially
reduced, and at large time distances it is lowered by many orders of magniitte effective
energy-splitado(t) extracted from the correlator is shown in the left plot of Figure 2, and it is in
perfect agreement with the theoretical expectation [6]. On the right pltiteosame figure it is
shown the effective estimaR(t) of the square of the matrix elemefd; |X|&;") computed as

B (XX e9%
R = 2cosh[@ (% —all —k|)]

(1.16)

which also agrees very well with the analytical result.

The approach described here is of inspiration for systems with a largasenof degrees of
freedom. In that case, however, one cannot make sense of the @ign‘module” fields. New
concepts have to be introduced as we illustrate in the following foStte) Yang-Mills theory

[4].
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Figure 2: Left: effective energy difference extracted from the twairfph correlator at any time separation
t/a. Right: the raticR as defined in the text.

2. Extension to Yang-Millstheories on thelattice

We again divide the parity even sector of the theory from the parity oddintathe energy levels
E* and E respectively. The statistical variance of the estimate of a two-point cboelfnc-
tion (O(x0)O(0)) of a parity-odd interpolating operat@, computed by the standard Monte Carlo
procedure, is defined as

0% = (0%(x0)0%(0)) — (O(x0)0(0))? - (2.1)
At asymptotically-large time separations the signal-to-noise ratio takes the form

(0(x0)0(0)) _ [(E1[010) _ ;
o oo © (2:2)

i. e. the signal is again depleted exponentially in time.

For the one-dimensional harmonic oscillator the quantity fady,, ; .} represented the ratio
Z~/Z* for a system of one time-slice with fixed boundary configurations. Due teethdarity of
the spectrum this ratio is of @). The same cannot be expected for systems with many degrees
of freedom, as the four-dimensional Yang-Mills theory, the ratio will ratieeof Qe (-/a°), with
L the spatial extent of the lattice. However, if one considers systemmse-slices large, with
d ~ 1/T. andT, the critical temperature, the same ratio is now expected to beeof}{) for each
boundary configuration. These are the quantities we want to directlg@ecel use to rewrite our
observables. To this end we first need to briefly recall the formalism dfahsefer matrix, we refer
to [4] for a more thorough discussion.

2.1 Transfer matrix

We adopt Wilson’s regularization of gauge theories [7]. The cormedipg transfer matrix has been
explicitly constructed in [8, 9, 10, 11]. The functional integral with peiédabundary conditions
in time can be written as

z— [ XT!__':) D3V T Va1, Vh) (2.3)
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where the transfer matrix elements among stitg$ in the coordinate basis are defined as

T Vi1 Vo | = / DO e Mool (2.4)
with 1 1
L[VXoH,Vx()] =K |:VXO+17VX0:| +5W [on+1] +5W |:VX0:| ) (2.5)

and|VX‘3> is the result of a gauge transformati@non the statéVy,). The kinetic and the potential
contributions to the Lagrangian are given by

K [VXOH,VXO} iy Z [1— %ReTr{Vk(Xo—i— l,x)VkT(xo,x)}] : (2.6)
and
W[vxo} _ g Z Z {1— %ReTr{Vm (xo,x)}] , 2.7)

respectively, wher®, is the spatial plaguette computed with the linkgx). By exploiting the
invariance of the Haar integration measure under left and right multiplicatisedétsy to show that
the transfer matrix is gauge invariant. For a thick time-slice, i.e. the ensembtend$ jn the sub-
lattice with time coordinates in a given intervaj, yo| and bounded by the equal-time hyper-planes
at timesxg andyp, the transfer matrix elements can be introduced by the formula

Yo—1 Yo—1

T[vyo,vxo} _ / [T DslVuol [] T[VZOH,VZO} . 2.8)
Wo=xo+1 2=Xo

The parity transformation acts on the states in the coordinate basis as

ONV)y=IvTy, V) =PsVv),  Vx) =V (—~x-k, (2.9)

wherePy is the projector on gauge invariant states. Again, we can then define deterapt of
parity eigenstates

1 . .
and their transfer matrix elements are given by
(9 Vo1l TV, 8 = 2855 T Vs, Vo] (2.11)
1
T Vg1, Vho| = E{T[le,vxo} +5T Mo |} - (2.12)

For a thick time-slice the matrix elements between parity states can be introduerplbiing the
same composition rule as in Eq. (2.8) with T replaced kylT addition, the relations

/ Da[Vy ] TS [vyo,sz] TS {VZO,VXO} —0, (2.13)

/ Da[Vy ] TS {vyo,sz} T [VZO,VXO} — TS {vyo,vXO} (2.14)



Symmetries and exponential error reduction in YM theoriethe lattice

hold. In particular they imply that

TS[VVO ) VXO} _ TS[UYOa Uyo—l]

1
= - [ D4[U]supe Y , 2.15
T[Vyo,VxO] Zsub/ 4[ ]SUb T[UyoaUyofl] ( )

an useful expression for the practical implementation of the multi-level algoridbscribed in
the following. The subscript “sub” indicates that the integral is performesr the dynamical
field variables in the thick time-slick, yo| with the spatial componentdy(x) of the boundary
fields fixed toVi(xo,X) andVk (Yo, X) respectively. Finally, by replacing[V,+1, Vx| in EqQ. (2.3) by
3 s T°[Vi+1, Vi) @nd repeatedly applying Eq. (2.13), it is possible to rewrite the path integral
sum of functional integrals

T-1
2=y 7= / XO|‘:|0 D3[VXO]TS[VXO+1,VXO} : (2.16)

each giving the contribution from gauge-invariant parity-even and states respectively.

The insertion of 7V, Vy,] in the path integral plays the r6le of a projector, as on each config-
uration it allows the propagation in the time direction of states with partyly. Indeed the parity
transformation of one of the boundary fields ifpf, Vs, | flips the sign of all contributions that it
receives from the parity-odd states while leaving invariant the rest. €hesame applies to the
path integral in Eq. (2.3) if the periodic boundary conditions are replagéd-periodic boundary
conditions, i.e.Vr = VOD. All contributions from the parity odd states are then multiplied by a
minus sign.

2.2 Thehierarchical integration scheme

To determine the parity projector between two boundary fields of a thick timerdhe basic
building block to be computed is the ratio of transfer matrix elements

I}
T[VXO+d7VXO]
T[VX(H-d ) VXO}

As mentioned above, farof O(1/T), the ratioRis expected to be dd(1). However the integrands
in the numerator and in the denominator on the r.h.s of Eq. (2.17) are, inagieveny different
and the main contributions to their integrals come from different regions gfthse space. The
most straightforward way for computirigis to define a set ofi systems with partition functions
21 ... Z designed in such a way that the relevant phase spaces of suceetsgjvals overlap and
that 27 = T[on+d,VX€] and 2 = T[Vyy+d, Vx| The ratioR can then be calculated as

R[VXO+daV><o] = (2-17)

N o T
X — X ... X X

R=_1 . :
2 25 1

(2.18)

with each ratio on the r.h.s. being computable in a single Monte Carlo simulation agavgthe
proper reweighting factor.

For the case at hand; and Z;, are the partition functions of two systems differing only for
the boundary conditions in time. In both cases Dirichlet boundary condigimmanposed but the
boundary configurations at time + d differ by a parity transformation. Instead of relating the
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boundary configurations in such a way, we change the action of ones dfvih systems on the
last time-slice, by introducing a new temporal link connecting the pairf +d — 1 on the last
dynamical time-slice to its parity transformed,xo + d on the boundary. We call the associated
plaquette “parity twisted” space-time plaquette aid (parity twisted kinetic term) the sum of
such plaquettes (see Figure 3). To interpolate between the two systemsmhessigich off the

K K?
x+k x+k

=X

-x-k
kT Yy Y0 Yo Y0

t

Figure 3: Two dimensional representation of the plaguettes in thetkirtermsK (r = 1/2) andK” (r =
—1/2) on the time-slicejo — 1. The telescopic algorithm described in the text bridgesvéen the two
systems ir® steps.

coupling B in K by decreasing it in steps of size= 1/L2 while increasing the coupling iK”
by the same amount, we distinguish the interpolating actions by a paramet2r<r <1/2. In
this way we move i3 steps from one system to the other. This means we need to perform a
chain ofL> Monte Carlo simulations within a Monte Carlo simulation and we therefore have an
algorithm, which scales with the second power of the volurheThis is the case also for other
known methods for computing ratios of partition functions [12, 13, 14].

Once the projectors have been computed, the ratio of partition fun&fgaan be calculated
by implementing the hierarchical two-level integration formula

/D4 e SUIp 4 [T.0) (2.19)

where B 4 [yo,xo} is defined as

P {yo, }:m1TS[UX0+(i+1)-d>UXo+i-d]

(2.20)
8 TUsor(i41)-ds Uxotial

with m> 1 andyg = X9+ m-d. The procedure can, of course, be generalized to a multi-level
algorithm. For a three-level one, for instance, each ratio on the r.h.s.¢22§) can be computed
by a two-level scheme. For each configuration of the boundary fieldsn#ynitude of the product

in our observable ﬁd [T,0] is proportional toe 51 T, and the statistical fluctuations are reduced
to this level. This has to be compared to the standard case in which eachucatiig gives

a contribution to the signal which decreases exponentially in time, whereastiibutesO(1)
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to the noise (variance) at any time distance. To achieve an analogouseetib gain in the
computation of the correlation functions, the projectotddve to be inserted in the proper way
among the interpolating operators. As a technical aside we remark that nifgutadion of R
requires a thermalization procedure for each value Bfe do not expect the latter to be particularly
problematic since, as mentioned above, expectation values for congseg@lties of refer to path
integrals with the relevant phase spaces which overlap. The ratio R is ¢ednpy simulating
systems corresponding to consecutive valuasafe after the other, and by starting from the one
used to extract the boundary fields=£ 1/2).

2.3 Results

In the four-dimensional SU(3) Yang-Mills theory we have simulated lattices avitinverse gauge
coupling of 3 = 6/95 = 5.7 which corresponds to a value of the reference sgatd about 293a
[15, 16]. The number of lattice points in each spatial direction has beeto et 6,8 and 10
corresponding to a linear size 0f01 1.4 and 17 fm respectively. For each spatial volume we have
considered several time extertsthe full list is reported in Table 1 together with the number of
configurations generated, the details of the multi-level simulation algorithmfasedch run and
the results foz~ /Z and for the effective made~ of the first parity-odd glueball state extracted
from that ratio:

M~ = —%ln <ZZ(T)> . (2.21)

The natural logarithm of%l for the interpolating systems in Eq. (2.18) is shown as a function
of r in the left panel of Fig. 4 for a typical configuration of the rug. B\s expected, its value is of
O(1) for each value of. Its almost perfect asymmetry under» —r, however, makes the product
of all the L3 results a quantity o®(1). This impressive cancellation, which is at work for- 3 on
all volumes considered, can be better appreciated in the right panel sdutie Figure, where the
sum of the function in the interval-r,r] is plotted for a subset of values of It is the deviation
from the exact asymmetry which flips in sign under a parity transformation@bbthe boundary
fields, and forms the signal we are interested in.

The Monte Carlo history of fT/Z[T,O} is shown in Figure 5 for the latticesA The central
dashed line corresponds to the average value, while the other two delimitérstandard devia-
tion region. As expected the Monte Carlo history is very regular and eafigaration gives an
estimate of the observable which is of the right size. Fluctuations are five times¢hage value
at most. We have observed similar Monte Carlo histories also for the other run

Finally we show the results faf~/Z andaM~ in Figs. 6 and 7 respectively. We have been
able to follow the exponential decay in the ralo /Z over almost 7 orders of magnitude. The
data at large values @f/a can be used to estimate the multiplicity of the first parity odd state, a
guantity which is not accessible within the other approaches. To this enddtisipn however has
to be increased, as for now we assume the multiplicity to be one, which justifiekefinéion of
the effective mas®~ in Eq. 2.21. Figure 7 shows that the algorithm works as expected as tine err
on the effective mass could be kept constant to the level of a few ganpen a separation of about
3.5 fm. It also shows that finite size effects are rather large for lattices arlisige around 1 fm
(L/a= 6) but they become negligible within the present accuracy once a sizéwhiL /a=8) is
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Latice L T Neont  Nev d Z am~
A1 6 4 50 2 4 0.409(8) 0.223(5)
Az 5 50 2 5 0.177(13) 0.346(14
Az 6 50 2 6 0.069(7) 0.446(17)
As 8 175 2 4 1.47(2810°2  0.528(24)
As 10 50 2 5 2.2(510°2 0.611(20)
Ag 12 90 2 6 6.6(1710*  0.610(21)
A7 16 48 2 8 2.8(8)10°° 0.655(18)
Asg 20 48 3 {5,10} 1.5(5)10°6 0.670(15)
B1 8 20 2 4 0.426(8) 0.213(5)
B, 25 2 5 0.061(6) 0.558(21)
B3 75 2 3 1.65(26102  0.685(27)
Ba 48 2 4 1.37(2610°3  0.824(24)
Bs 12 48 3 {3,6} 3.6(18)10°6 1.045(41)
Bs 16 36 3 {4,8} 5.2(19)10°8 1.048(23)
Ci 10 4 20 2 4 0.455(12) 0.197(6)
C 24 2 5 0.060(3) 0.561(11)
Cs 50 2 3 1.6(4010°2 0.687(39)
Cs4 48 2 4 5.2(16)10°* 0.944(39)
Cs 12 24 3 {3,6} 3.3(1710°° 1.052(43)

Table 1. Simulation parameters and resultd.o is the number of configurations of the uppermost level,
Niev is the number of levels andlis the thickness of the thick time-slice used for the varimvgls. The

effective mas$/~ is given by—T1In(Z~/Z).

reached. We therefore quatgmg- = 3.07(7) fromL/a= 8, T /a= 16 as a preliminary result for
the mass of the lightesf© = 0~ glueball at a lattice resolution of D7 fm with Wilson’s gauge
action. Given the quite large value of the lattice spacing, cutoff effects rfiegt @ahis number

significantly.

3. Conclusions and outlook

For most of the two-point functions computed on the lattice the noise to sigimgraws expo-
nentially with the time separation of the source and the sink. This disease carelddy imposing
the propagation of states with the desired quantum numbers only on eaje(g@nfiguration.
The algorithm proposed here solves the problem by making use of the sympneprerties of
the underlying quantum theory. We have numerically tested the approach fiouhdimensional
SU(3) Yang-Mills theory, by computing the mass of the lightest parity-oddogllle For a given



Symmetries and exponential error reduction in YM theoriethe lattice

15— T T T OA———T———T T T T

L 1 o35 =

10— — = ]

- b O3j -

r 1 o2t 3

S N C | ]

I 1 o02F =
[(a - R E e
— OF - o0.asfF ’ =
= C ] - E
—1 - 1 C ]
[ A Olj | i

51— o E ’ ]

- 1 0.05f H 3

r ] oiou i HHHH =

10l ] - P g

N b -0.05; {

sl L 11 E 11

200 -100 O 100 200 0 50 100 150 200 250
3 3
rL rL

Figure 4: Left: the natural logarithm 04%1 is shown as a function of (statistical errors are smaller than
symbols) for a typical configuration of the rurgBRight: the sum of the points in the intenatr,r] is
plotted as a fur

LML L L I L L L L L LB |

0.02

0.015

0.01

y 0.005

P, {(10,0)

-0.005

v b b b b b b b by by g Iy

0 5 10 15 20 25 30 35 40 45 50

conf

Figure 5: Monte Carlo history of the quantity,R[10, 0] for the run A.

precision on the latter the algorithm scales as a powar, tifie total time extent of the lattice, and
we have therefore been able to follow an exponential decay over Fsavflenagnitude and up to
separations of .5 fm. That allows to isolate the contribution of a single state with unprecedented
confidence. We have also studied finite size effect and collected strdiwgtions that, for the
effective mass considered here and within our statistical errors, thresegligible forL > 1.4 fm.
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The multiplicity of the state can also be computed using the approach desariizkd) the near
future we plan to increase the accuracy on its determination, which cartdiaedbonly with lim-
ited precision by using the data produced so far. The reduction of syttaimaertainties related
to lattice artifacts remains an expensive task as the algorithm scales rosghja3f.

The inclusion of other symmetries is straightforward. We have already imptecheharge-
conjugation and tested it in small volumes, observing basically the same effi@éthe integra-
tion scheme as for the parity discussed here. Different symmetry tramations can be actually
considered simultaneously and we plan to include cubic rotations and translaftee mass of the
lightest state in any sector specified by the quantum numbbérsould then be computed without

12
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suffering from the exponential problem [17].

A way to generalize the ideas reported here to systems including fermioeedegfrfreedom

is, at present, not known. Among other advantages, such an extemsidd allow to compute
the ratio between the partition functions at different baryon quantum nsnaveiding the sign
problem, which affects the simulations at finite density.

References

[1]
(2]
(3]
[4]
[5]
[6]
[7]
(8]

[9]
[10]
[11]
[12]
(13]
(14]
[15]

[16]
[17]

G. Parisi, Phys. Rept. 103 (1984) 203.

G.P. Lepage, TASI 89 Summer School, Boulder, CO, Jun 41989.

M. Della Morte and L. Giusti, Comput. Phys. Commui80 (2009) 813.

M. Della Morte and L. Giusti, Comput. Phys. Commu80 (2009) 819, arXiv:0806.2601 [hep-lat].
M. Lischer and P. Weisz, JHEP 09 (2001) 010, hep-lat/01@8

M. Creutz and B. Freedman, Ann. Phys. 132 (1981) 427.

K. G. Wilson, Phys. Rev. 10, 2445 (1974).

K.G. Wilson, in "New developments in quantum field thearnyd statistical mechanics", Cargese
1976, Eds. M. Lévy and P. Mitter, Plenum (NY 1977).

M. Lischer, Commun. Math. Phys. 54 (1977) 283.

M. Creutz, Phys. Rev. D15 (1977) 1128.

K. Osterwalder and E. Seiler, Ann. Phys. 110 (1978) 440.

A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett168%) 1195.

C. Hoelbling, C. Rebbi and V.A. Rubakov, Phys. Rev. DBBQ1) 034506, hep-lat/0003010.
P. de Forcrand, M. D’Elia and M. Pepe, Phys. Rev. Lett(ZB®1) 1438, hep-lat/0007034.

ALPHA Coll., M. Guagnelli, R. Sommer and H. Wittig, NudPhys. B535 (1998) 389,
hep-1at/9806005.

S. Necco and R. Sommer, Nucl. Phys. B622 (2002) 328 |a&p108008.

M. Della Morte and L. Giusti, in preparation.

13



