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I describe a method that places the fermion fields and the gauge fields on different lattice spacings

during the Hybrid Monte Carlo generation of Ginsparg-Wilson dynamical ensembles. The idea is

motivated by Wilson’s formulation of the renormalisation group. After outlining the underlying

theory, I describe a method to perform most of the work of the HMC on a coarse lattice, only

requiring to convert to and from the fine lattice once for eachindependent configuration. Because

the bulk of the work takes place on the coarse lattice, including the calculation of most observ-

ables, this method saves over an order of magnitude in computer time over previous methods.
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1. Introduction

Overlap fermions [1] are unquestionably the theoreticallycleanest formulation of lattice QCD,
because they alone exactly fulfil the Ginsparg-Wilson relation [2] and satisfy an exact chiral sym-
metry on the lattice [3]. However, they are also unquestionably the most expensive formulation.

In [4], I explored the possibility that the lattice overlap Dirac operator is connected to the
continuum by a block renormalisation group transformation; this was motivated by consideration
of their obedience to the renormalisation group derived Ginsparg-Wilson relation. The construc-
tion contained within that paper was incomplete, because itdid not address how to construct the
Yang-Mills action in a similar way. I will finish this work in afuture paper by using a coordinate
transformation of the gauge fields, and I briefly outline the method in section 2.3 of this work. Once
the suitable transformation is constructed, and the correct form of the Yang-Mills action found, then
it will be possible to transfer from one lattice spacing to another, including the continuum, through
the renormalisation group.

This opens up the possibility of running lattice simulations at two length scales: a fine lattice
for the gauge fields, and a coarse lattice for the fermions. The connection between the coarse lattice
and an equivalent action on the fine lattice will be provided by renormalisation. The advantages of
this approach are obvious: if we use a scale factor ofsbetween the fine and coarse lattices, then we
save at least a factor ofs4 in computer time for the expensive parts of the calculation.However, the
physics would be identical on the coarse lattice and the fine lattice, which itself can be extracted
if necessary at an additional cost, but will only be requiredfor certain observables which require
a finer resolution (for example in studies using heavy quarks). The challenge is linking the coarse
action with a fine action. One possibility is re-weighting, but the re-weighting coefficients will be
of ordereα6a6V+... (the leading ordera4V term can be absorbed into the Yang-Mills action), which
are likely to be unstable at larger volumes without fine tuning of α6 and the terms hidden by the
ellipsis. A better approach is to find some method of interpolating between the coarse action and
the fine action; and here I will present one possible way of doing this.

These proceedings are intended only as a very preliminary description of the proposed method.
A full proof of the method’s validity, numerical results, and a discussion of whether this is indeed
beneficial will follow in a subsequent paper. In section 2, I outline the underlying renormalisation
group theory. In section 3, I outline the proposed Monte-Carlo routine; In section 4, I describe the
numerical implementation which I will use in my tests, and, in section 5, I conclude.

2. Renormalisation group and overlap fermions

2.1 Gauge Action

The multi-grid HMC algorithm presented in section 3 requires that the action is written entirely
in terms of the Dirac operator (I shall justify this statement in the follow-up paper). This includes
the Yang-Mills term. I note that in the continuum, ifD = γµ(∂µ −Aµ), then

−iσµνFµν = (γ5D)2−
1
4

TrS(γ5D)2, (2.1)
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where the trace is only over the spinor indices. Therefore, the Yang-Mills action can be written as

Sg =
β
4

TrF2
µν =

β
4

Tr[(γ5D)4]−
1
4

Tr[(γ5D)2TrS[(γ5D)2]]. (2.2)

This can obviously and easily be extended to any lattice formulation of the Dirac operator, although
for any Dirac operator which is not ultra local, including the overlap, the numerical implementation
requires a stochastic estimate, either following the method proposed in [5], or by using a Gaussian
heat-bath and a rational approximation of the exponential.The idea of using the trace of a function
of the Dirac operator to simulate the gauge action was first proposed in [6].

2.2 Renormalisation of fermion fields

A block renormalisation group transformation of the fermion fields can be defined in terms of
blocking matricesB−1 andB

−1
(which must be functions of the gauge fields) andα (which must

be independent of the gauge fields)

Z0 =
Nf−1

∏
j=0

∫

dU
∫

dψ( j)
0 dψ ( j)

0 e−Sg[U ]−∑
Nf −1

i=0 ψ(i)
0 D(i)

0 ψ (i)
0 ×

∫

dψ( j)
1 dψ( j)

1 e−∑
Nf −1

i=0 (ψ(i)
1 −ψ(i)

0 (B
(i)

)−1)α(ψ (i)
1 −(B(i))−1ψ (i)

0 ) ∝

Z1 =
Nf−1

∏
j=0

∫

dU
∫

dψ( j)
1 dψ ( j)

1 e−S′g[U ]−∑
Nf −1

i=0 ψ(i)
1 D(i)

1 ψ (i)
1 +J (2.3)

For simplicity, I will subsequently suppress the flavour indicesi and j. Forα = ∞, we may write

BD0B =D1 J =Tr[logD1− logD0]

ψ1 =ψ0B
−1 ψ1 =B−1ψ0. (2.4)

A possible choice of blocking is

B
−1

=(D1)
1/2D−1/2

0 ; B−1 =D−1/2
0 (D1)

1/2, (2.5)

which leads, ifD1 is the lattice overlap operator andD0 the continuum Dirac operator, to the
Ginsparg-Wilson relations,

γLD1+D1γR = 0, (2.6)

with

γL,R = γ5

(

1−
D†

1D1

4

)1/2

± γ5(D1−D†
1)

(

1−
D†

1D1

4

)−1/2

, (2.7)

and an associatedC P-symmetric lattice chiral symmetry.
In [4], I introduced a parameterζ to control the ‘latticeness’ of the fermion fields. The Dirac

operatorD1 was re-written in terms of the exponentials,ζ 4e−ζ ∑µ |xµ−nµ |, wheren is a lattice site and
x a position in the continuum, so that asζ → ∞ these exponentials become Diracδ -functions and
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a lattice theory is reproduced. While it is difficult to visualise the theory at the target ofζ = ∞, at
finite ζ everything remains well-defined. I showed that, for overlapfermions, the blocking remains
valid as the limitζ → ∞ is taken. A full discussion and proof can be found in [4].

In this work, I consider a similar blocking from a fine latticeoverlap operator,D0, to a coarse
lattice overlap operator,D1, each with an underlying fine gauge fieldU0 andU1 respectively. I write
the blocking, the Dirac operator, gauge fields and fermion fields in terms of a parameterξ , which I
shall use to interpolate from the coarse lattice to the fine lattice. We may write

Dξ = B†[Uξ ,ξ ]D0[Uξ ]B[Uξ ,ξ ] (2.8)

At ξ = 0, B = 1 andD remains the original fine Dirac operator; atξ = 1 Dξ is equivalent to a
coarse Dirac operator. The fermion field transformation maybe written as

ψξ =e
1
2

∫ ξ
0

d
dξ ′ log[Dξ ′ ]dξ ′ψ0; ψξ =ψ0e−

1
2

∫ 0
ξ

d
dξ ′ log[Dξ ′ ]dξ ′ ; (2.9)

and an infinitesimal blocking is

ψξ+δξ = ψξ +
1
2

δξ
d

dξ
log[Dξ [Uξ ,ξ ]]ψξ . (2.10)

Thus the Jacobian for this infinitesimal change in the fermion fields together with the change in the
gauge action is

logdetJ−δ [Sg] = Trδξ
d

dξ
[

Sξ [D]
]

, (2.11)

whereSξ [D] = log[Dξ ]−Sg[Dξ ]

2.3 Gauge field flows

We may define a differential with respect to the gauge fields as

∂ a
x,µ f (U) = lim

t→0

d
dta

f (Ut;x,µ ;y,ν ); Ut;x,µ ;y,ν =

{

eitT a
Ux,µ x = y,µ = ν

Ux,µ otherwise
(2.12)

For a gauge field transformation given by,

d
dξ

Uξ ,x,µ = iΠξ ,x,µ [Uξ ,ξ ]Uξ ,x,µ , (2.13)

the Jacobian,JU , of the infinitesimal transformation satisfies [7]

Tr logJU = iδξ ∂ a
x,µ (Πξ ,x,µ [Uξ ,ξ ]). (2.14)

Thus, the solution to the equation

Tr[i∂ a
x,µ (Πa

x,µ)+ i∂ a
x,µ(S)Πa

x,µ + ∂ξ S] = Cξ , (2.15)

where∂ξ excludes the dependence onξ within the gauge fields, andCξ is independent of the gauge
fields, completes the renormalisation group link betweenD0 andD1 (and equally the renormali-
sation group construction of the overlap action). It can be shown that a solution forZξ exists for
all ξ as long asS and∂ξ S are analytic, and integrating over this solution will give the required
transformation of the gauge fields. Finding this solution israther more problematic. However, it
is possible to map from the coarse gauge field to the fine gauge field stochastically, and for an
importance sampling method, that is good enough.
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3. Multi-grid HMC

The detailed balance equation reads,

P[U0
0 ←U1

0 ]WC[0,U1
0 ] = P[U1

0 ←U0
0 ]WC[0,U0

0 ] = P[U1
0 ←U1

1 ]P[U1
1 ←U0

1 ]P[U0
1 ←U0

0 ]WC[0,U1
0 ],

(3.1)

where, inU τ
ξ , the subscript refers toξ and the superscript to Monte-Carlo time and

WC[ξ ,Uξ ] =
Nf

∏
i=1

det[Di[ξ ]]e−Sg[ξ ]. (3.2)

If each of the three steps satisfies detailed balance, then itis clear that the complete update of the
gauge field satisfies detailed balance. For the transfer fromthe fine to the coarse lattice, I introduce
the momentum fieldΠ according to the Gaussian distributione−(Π+Aξ )2

, where

Aξ = (∂ a
x,µ (S))−1(∂ξ S)x,µ . (3.3)

This requires that(∂ a
x,µ (S)) is invertible (I shall leave the proof until the later work),and that the

Dirac operator is constructed so thatAξ is independent of the gauge and pseudo-fermion fields at
ξ = 0 andξ = 1. We then proceed by integrating along the equations of motion using a reversible,
area conserving procedure, such as the Omelyn integrator, along a trajectoryT,

d
dξ

U =i(Π+Aξ )U ;
d

dξ
Π =∂ a

x,µS[Dξ ]−
d

dξ
Aξ , (3.4)

which conservesE = (Πξ +Aξ )2+TrS[Dξ ]. Π now is a conjugate field and does not depend on the
gauge field. The Jacobian from the gauge field update cancels the Jacobian from the momentum
update. Reversibility can be maintained using an iterativeprocedure. I estimate the trace using
pseudo-fermions generated according to a heatbath and a rational approximationR[Dξ ] ∼ eS[Dξ ]

obtained using the Remez algorithm, so that
∫

dφdφ†e−φ†Rφ = detR−1 = e−TrS[D]. The detailed
balance equation for the transformation from[U1] to [U0] reads (if the integration is exact)

P[U0←U1]WC[U1] =

∫

dΠ1dU1

∫

dφdφ†e−
1
2(Π1+A1)

2
e−φ†R[Dξ ]φ δ ([U0,Π0]−T[U1,Π1])

=

∫

dΠ0dU0dφdφ†e−
1
2(Π0+A0)

2
e−φ†R[Dξ ]φ δ ([U1,Π1]−T−1[U0,Π0])

=P[U1←U0]WC[U0]. (3.5)

We can correct for the error from the numerical integration either by re-weighting or an extrapo-
lation in the integration step-size. Similarly, the integration fromU0 to U1 can be shown to satisfy
detailed balance, although for practical purposes this step will not be required, because each coarse
configuration can be generated from the same thermalised fineconfiguration.

We run enough coarse trajectories to gain an independent configuration, and, if required, gen-
erate a fine configuration using the procedure above. For manyquantities, the gauge field asso-
ciated with the fine Dirac operator will not be needed: calculations can proceed with the coarse
Dirac operator and non-perturbative renormalisation willtake care of the rest. Only if the finer
lattice resolution is needed for a particular observable will it be necessary to perform the costly
conversion to the fine lattice and the equally costly calculation of the observable.
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4. Numerical implementation

The initial kernel operator,K0, is defined as a Wilson operator on the fine gauge field:

(K0)x,x′ = γ5

(

1
κ
−∑

µ

[

(1− γµ)δx+µ̂ ,x′Uµ(x)+ (1+ γµ)δx−µ̂ ,x′U
†
µ(x− µ̂)

]

)

. (4.1)

Using a scale factor of three, I define a blocking operator,Bi
K for the kernel in terms of the parameter

ξ and additional parametersCi
L

(which can be tuned to minimize the force and ensure stability when
constructing the fine gauge),

(Bi
K)y,y′ [ξ ] = ∑

n
∑
Lyy′

ULyy′
[(1−ξ 2)2δyy′+(1− (1−ξ 2)2)δyn]C

i
Lyy′

∏
β

θ
(

3
2
−|yβ −nβ |

)

θ
(

3
2
−|y′β −nβ |

)

, (4.2)

wherenµ ∈ 1,4,7, . . ., Lxn a path of links betweenx andn (constrained within the hypercube), and
UL the corresponding path ordered product of links. For a coarse kernel operatorK1 = (B0

K)†K0B0
K

the Fourier transform (in the free theory) takes the formiγµ sin(pµ +(1−cos(pµ))+ ι iγµ sin(3pµ +

(1−cos(3pµ ))+m for someι . For ι ≥ 1 this introduces fermion doublers. I have chosen to avoid
these doublers by including a second term with different coefficients, so that

Kξ = (B0
K)†K0B0

K−α(B1
K)†K0B

1
K + β (B0

K)†B0
K−β ′(B1

K)†B1
K− γ(1− (1−ξ 2)2)(1−δx,nδn,x′),

(4.3)

where the parametersα , β , β ′ and γ need to be tuned to avoid doublers. A badly tuned set of
parameters is usually obvious from the eigenvalue spectrumof the kernel and overlap operators.
BK is constructed so that∂ξ BK = 0 atξ = 0 andξ = 1, as required by the algorithm described in
the previous section. The overlap operator at massµ is D[ξ ] = (1+ µ)+ (1−µ)γ5sign(Kξ ).

Construction of the HMC algorithm for the coarse Dirac operator is trivial. I am currently
testing it on a small PC-Cluster, using a 438 coarse lattice to generate 12324 gauge field ensembles,
and comparing it against a 1224 trajectory generated using normal methods; timing the coarse
multi-grid HMC over trajectories of length 1 and the non-multi-grid comparison over trajectories of
length 0.02 and extrapolating to a length 1 trajectory. The multi-grid code gave, on average, a factor
of 107 gain over the original routine. There was, however, anoverhead of a factor of three from a
normal 438 run, which was mostly caused because both the overlap and Kernel operators were very
poorly conditioned compared to the small lattice counterpart, and partly from the additional work
needed to differentiate the gauge fields. Obviously, the cost of constructing the fine lattice has yet
to be included in this estimate. It is to be hoped that with proper tuning of the kernel operatorKξ
that this cost will be no more than that of a single length 1 trajectory on the larger lattice, meaning
that overall the gain will be roughly proportional to the autocorrelation length.

5. Discussion

I have discussed whether it is possible, using overlap fermions, to generate fine gauge fields
ensembles using a coarse Ginsparg-Wilson Dirac operator. The method will not be valid for other
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lattice Dirac operators because the underlying renormalisation group theory breaks down. Small
scale tests show that this method gives a two orders of magnitude gain over my previous HMC
algorithm, although with additional factors not yet included in that cost; the most important of
which is the cost of extracting physics from the gauge field ensembles. It may reasonably be asked
what use is there in generating the ensembles quickly using this method if one then has to apply an
overlap operator on an exceptionally large lattice to extract physics. For most quantities it will also
be possible to do the physics on the coarse lattice: the coarse and fine lattice observables will be
linked to each other by renormalisation, and the renormalisation constants can be calculated non-
perturbatively as usual. The number of observables which require the fine lattice will, hopefully, be
quite small. It should also be possible to adapt this method to allow an anisotropic formulation on
the fine lattice. Why then use this method at all, since it gives a considerable overhead compared
to the usual approach of a coarse Dirac operator on coarse gauge field? Because the locality of the
overlap operator is improved (which I have confirmed numerically), it will (if correctly constructed)
have smaller lattice artefacts, and it will have a greater sensitivity to the topology of the fine gauge
field, and, of course, the fine gauge field and larger lattice isavailable for those observables which
require it.

However, the question of how much of a gain, if any, is achievable by this approach is not really
answerable until it has been fully tested. I hope to present numerical results in the subsequent paper.
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