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1. Introduction

Overlap fermions [1] are unquestionably the theoreticayanest formulation of lattice QCD,
because they alone exactly fulfil the Ginsparg-Wilson re@faf2] and satisfy an exact chiral sym-
metry on the lattice [3]. However, they are also unquestibnthe most expensive formulation.

In [4], | explored the possibility that the lattice overlapr&z operator is connected to the
continuum by a block renormalisation group transformatibis was motivated by consideration
of their obedience to the renormalisation group deriveds@aing-Wilson relation. The construc-
tion contained within that paper was incomplete, becaudalinot address how to construct the
Yang-Mills action in a similar way. | will finish this work in future paper by using a coordinate
transformation of the gauge fields, and | briefly outline thethod in section 2.3 of this work. Once
the suitable transformation is constructed, and the colwem of the Yang-Mills action found, then
it will be possible to transfer from one lattice spacing totier, including the continuum, through
the renormalisation group.

This opens up the possibility of running lattice simulaiat two length scales: a fine lattice
for the gauge fields, and a coarse lattice for the fermions.cbmnection between the coarse lattice
and an equivalent action on the fine lattice will be providgadnormalisation. The advantages of
this approach are obvious: if we use a scale factatgftween the fine and coarse lattices, then we
save at least a factor of in computer time for the expensive parts of the calculatidowever, the
physics would be identical on the coarse lattice and the &tieeé, which itself can be extracted
if necessary at an additional cost, but will only be requif@dcertain observables which require
a finer resolution (for example in studies using heavy qyarkise challenge is linking the coarse
action with a fine action. One possibility is re-weightingt khe re-weighting coefficients will be
of ordere®ea™V+-- (the leading ordea®V term can be absorbed into the Yang-Mills action), which
are likely to be unstable at larger volumes without fine tgnif ag and the terms hidden by the
ellipsis. A better approach is to find some method of intexfppol) between the coarse action and
the fine action; and here | will present one possible way afiglthis.

These proceedings are intended only as a very preliminagriggion of the proposed method.
A full proof of the method’s validity, numerical results,da discussion of whether this is indeed
beneficial will follow in a subsequent paper. In section 2utlioe the underlying renormalisation
group theory. In section 3, | outline the proposed Montel€Camutine; In section 4, | describe the
numerical implementation which | will use in my tests, amdséction 5, | conclude.

2. Renormalisation group and overlap fermions

2.1 Gauge Action

The multi-grid HMC algorithm presented in section 3 regsiitteat the action is written entirely
in terms of the Dirac operator (I shall justify this statemignthe follow-up paper). This includes
the Yang-Mills term. | note that in the continuum Df= vy, (d, — Ay), then

. 1
—iouFuy = (D) — ZTVS(%D)Z, (2.1)
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where the trace is only over the spinor indices. Thereftie Yang-Mills action can be written as

B B

2

This can obviously and easily be extended to any lattice fideition of the Dirac operator, although
for any Dirac operator which is not ultra local, includingtbverlap, the numerical implementation
requires a stochastic estimate, either following the neffroposed in [5], or by using a Gaussian
heat-bath and a rational approximation of the exponeriiad idea of using the trace of a function
of the Dirac operator to simulate the gauge action was ficgigeed in [6].

Tr{(16D)*] — 3 Tr{(16D)?Trsl(46D)?]. 22)

2.2 Renormalisation of fermion fields

A block renormalisation group transformation of the fermfeelds can be defined in terms of
blocking matrice®8~* andB ' (which must be functions of the gauge fields) andwhich must
be independent of the gauge fields)

Ni—1 ; ; ~1_(i) (), (i
Zo = rL/dU/dwéwag)esg[U]ziNfo wog s
J:
/ dylagie £t @) -v5'E") a6 )
N¢—1

i i Nf=1_ (i) (i) (i
Z, = I_L/du/dwij)dw(l])e%[u]ﬁfo w0y g+ (2.3)
J:

For simplicity, | will subsequently suppress the flavourigedi and j. Fora = o, we may write
BDoB =D; J =Tr[logD; — logDy]
U, =B Y =B"yo. (2.4)
A possible choice of blocking is
=—1

B ' =(D1)¥?D, Y, B~1 =D, *(Dy)Y?, (2.5)

which leads, ifD; is the lattice overlap operator arigy the continuum Dirac operator, to the
Ginsparg-Wilson relations,

y.D1+ D1k =0, (2.6)

with

pip, )" pip,)
1 1
WR=V5 (1_1T> + y5(D1— D)) (1_1T> , (2.7)

and an associated &-symmetric lattice chiral symmetry.

In [4], | introduced a parametef to control the ‘latticeness’ of the fermion fields. The Dirac
operatorD1 was re-written in terms of the exponentiaz{ée‘Z 2uPu—mul \wherenis a lattice site and
X a position in the continuum, so that &s— « these exponentials become Di@dunctions and
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a lattice theory is reproduced. While it is difficult to vidiga the theory at the target gf= o, at
finite ¢ everything remains well-defined. | showed that, for ovefeamions, the blocking remains
valid as the limit{ — o is taken. A full discussion and proof can be found in [4].

In this work, | consider a similar blocking from a fine lattiogerlap operatof)y, to a coarse
lattice overlap operatoDR);, each with an underlying fine gauge figld andU; respectively. | write
the blocking, the Dirac operator, gauge fields and fermidddia terms of a parametér, which |
shall use to interpolate from the coarse lattice to the fitieeéa We may write

D¢ = B'[U¢, §]Do[Ug B[U; €] (2.8)

At ¢ =0, B= 1 andD remains the original fine Dirac operator; &t= 1 D is equivalent to a
coarse Dirac operator. The fermion field transformation tmayvritten as

i =ed o s 001 W —ge > E b oPeleE 2.9
and an infinitesimal blocking is
1_.d
We o = Ys + Eéfﬁ log[Dg [Ug, & 1] (2.10)

Thus the Jacobian for this infinitesimal change in the femfields together with the change in the
gauge action is
d

logdet) — 5[§] = Trdé dz

[S:[D]], (2.11)
whereS; [D] = log[Dg] — §[D¢]

2.3 Gauge field flows

We may define a differential with respect to the gauge fields as

ogufU) :t“_rg% f (Ut iy ); Uty = { S:“UX’“ )o(;eyr’\,‘vliszev (2.12)
For a gauge field transformation given by,
%Um = iMgxu[Ug. &)U (2.13)
the Jacobian]y, of the infinitesimal transformation satisfies [7]
Trlogdy =i8&05, (Mg xu[Ug, €]). (2.14)
Thus, the solution to the equation
Trliog, (Mg )+, (SNZ, +0:S =Cs, (2.15)

whered; excludes the dependence dwithin the gauge fields, ar@; is independent of the gauge
fields, completes the renormalisation group link betwBgrand D1 (and equally the renormali-
sation group construction of the overlap action). It can s that a solution foZ; exists for
all ¢ as long asS and ;S are analytic, and integrating over this solution will givestrequired
transformation of the gauge fields. Finding this solutionaiher more problematic. However, it
is possible to map from the coarse gauge field to the fine gaalgediochastically, and for an
importance sampling method, that is good enough.
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3. Multi-grid HMC

The detailed balance equation reads,

P[Ug — UgWe[0,Ug] = PUg — UgME[0,Ug] = P[Ug — U§IPU — UPIPIU7 — U V&[0, Ug],
(3.1)

where, inUET, the subscript refers 6§ and the superscript to Monte-Carlo time and

Nt
WE[€,Ug] = [ defD'[¢]le 5. (3.2)

If each of the three steps satisfies detailed balance, themwrl#ar that the complete update of the
gauge field satisfies detailed balance. For the transfertierfine to the coarse lattice, | introduce
the momentum fieldl according to the Gaussian distributien™+A¢)*, where

As = (05,,(8) " (9 S)xu- (3.3)

This requires thatd?, (S)) is invertible (I shall leave the proof until the later worknd that the
Dirac operator is constructed so th#gt is independent of the gauge and pseudo-fermion fields at
¢ =0andé = 1. We then proceed by integrating along the equations ofanatsing a reversible,
area conserving procedure, such as the Omelyn integrédog a trajectoryr,

%U =i(M+A:)U; %I‘I :df}uS[DE] — %AE,
which conserveg = (Mg +A¢)?+TrS[D¢]. M now is a conjugate field and does not depend on the
gauge field. The Jacobian from the gauge field update carel¥acobian from the momentum
update. Reversibility can be maintained using an itergtiaeedure. | estimate the trace using
pseudo-fermions generated according to a heatbath anébaalaapproximatiorR[Dg| ~ eP¢]
obtained using the Remez algorithm, so tiiakpdg’e ¢'R? = detR~1 = e TSPl The detailed
balance equation for the transformation fr@a] to [Up] reads (if the integration is exact)

(3.4)

P[Up — UsME[Us] = /dl‘lldul / dgdgle 3(MitAe0'RDIOS(1Ug o] — T(Us, Ma])
— / dModUodgdg’e2(MotA0)*e=@'RIDEO 51U, M4 — T~ 2Uo, Mo))

=P[U1 — Uo/We[Ug). (3.5)

We can correct for the error from the numerical integratidheg by re-weighting or an extrapo-
lation in the integration step-size. Similarly, the intaipn fromUg to U; can be shown to satisfy
detailed balance, although for practical purposes ths\sti not be required, because each coarse
configuration can be generated from the same thermaliseddirfeguration.

We run enough coarse trajectories to gain an independefigaaation, and, if required, gen-
erate a fine configuration using the procedure above. For maagtities, the gauge field asso-
ciated with the fine Dirac operator will not be needed: catiahs can proceed with the coarse
Dirac operator and non-perturbative renormalisation taile care of the rest. Only if the finer
lattice resolution is needed for a particular observabliitvbe necessary to perform the costly
conversion to the fine lattice and the equally costly cataaof the observable.
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4. Numerical implementation

The initial kernel operatoiy, is defined as a Wilson operator on the fine gauge field:

1 A

(KO)X,X/ =¥ (E - Z [(1— Vu)6x+[1,x’Uu(X) + (l+ Vu)éxfﬁ,x’u;j(x— “)]) . (4-1)
u

Using a scale factor of three, | define a blocking operdiprfor the kernel in terms of the parameter

& and additional paramete@% (which can be tuned to minimize the force and ensure stabifien

constructing the fine gauge),

By €] =3 3 Us [(1— €228y +(1— (1-E2))8uCh

n Ly
3 3
|;|9<§—|YB—nﬁ|>9<§—|)/ﬁ_nﬁ|>a (4.2)

wheren, € 1,4,7,..., £x, a path of links betweer andn (constrained within the hypercube), and
Uy the corresponding path ordered product of links. For a edeesnel operatok; = (B2 ) KBS

the Fourier transform (in the free theory) takes the foggsin(py, + (1—cogpy)) + iy, sin(3py +
(1—cog3py)) +mfor somer. Fori > 1 this introduces fermion doublers. | have chosen to avoid
these doublers by including a second term with differenffaments, so that

Ke = (BY)"KoBR — a(Bk)"KoBg + B(BR)"BR — B'(Bk) "Bk — (1 — (1 £%)?)(1— &xnbhx),
(4.3)

where the parameters, 3, 8’ andy need to be tuned to avoid doublers. A badly tuned set of
parameters is usually obvious from the eigenvalue spectiutne kernel and overlap operators.
Bk is constructed so thal:Bx = 0 até = 0 andé = 1, as required by the algorithm described in
the previous section. The overlap operator at massD[&] = (14 ) + (1— p) yssign(Ky ).

Construction of the HMC algorithm for the coarse Dirac oparas trivial. | am currently
testing it on a small PC-Cluster, using #4oarse lattice to generate3p2 gauge field ensembles,
and comparing it against a 42 trajectory generated using normal methods; timing theseoa
multi-grid HMC over trajectories of length 1 and the non-tirgtid comparison over trajectories of
length 0.02 and extrapolating to a length 1 trajectory. Thdirgrid code gave, on average, a factor
of 107 gain over the original routine. There was, howevewrhead of a factor of three from a
normal 48 run, which was mostly caused because both the overlap ameKaperators were very
poorly conditioned compared to the small lattice counter@and partly from the additional work
needed to differentiate the gauge fields. Obviously, thé @osonstructing the fine lattice has yet
to be included in this estimate. Itis to be hoped that withpprauning of the kernel operatél;
that this cost will be no more than that of a single length jettary on the larger lattice, meaning
that overall the gain will be roughly proportional to the @drrelation length.

5. Discussion

| have discussed whether it is possible, using overlap fammito generate fine gauge fields
ensembles using a coarse Ginsparg-Wilson Dirac operalarniethod will not be valid for other
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lattice Dirac operators because the underlying renoratadis group theory breaks down. Small
scale tests show that this method gives a two orders of matmigain over my previous HMC
algorithm, although with additional factors not yet inohadin that cost; the most important of
which is the cost of extracting physics from the gauge fiekkanbles. It may reasonably be asked
what use is there in generating the ensembles quickly ukiagrtethod if one then has to apply an
overlap operator on an exceptionally large lattice to exfpaysics. For most quantities it will also
be possible to do the physics on the coarse lattice: the e@end fine lattice observables will be
linked to each other by renormalisation, and the renormiddis constants can be calculated non-
perturbatively as usual. The number of observables whighire the fine lattice will, hopefully, be
quite small. It should also be possible to adapt this methadlow an anisotropic formulation on
the fine lattice. Why then use this method at all, since it gi@eonsiderable overhead compared
to the usual approach of a coarse Dirac operator on coarge digld? Because the locality of the
overlap operator is improved (which | have confirmed nunadigily, it will (if correctly constructed)
have smaller lattice artefacts, and it will have a greatasisigity to the topology of the fine gauge
field, and, of course, the fine gauge field and larger lattiexadlable for those observables which
require it.

However, the question of how much of a gain, if any, is actikvay this approach is not really
answerable until it has been fully tested. | hope to presemtarical results in the subsequent paper.

Acknowlegments

| am grateful to the support of the Deutsche Forschungsgertieaft grant DFG FOR-465,
and for many useful discussions with Andreas Schéfer. | @m giateful to the hospitality of the
Kivali Institute of Theoretical Physics in Beijing duringe workshop “Lattice Quantum Chro-
modynamics” in July 2009. Numerical calculations were geried on the PC Cluster Juli at the
Jilich Supercomputer Center in Germany.

References

[1] R. Narayanan, H. Neuberger, Chiral fermions on thedattPhys. Rev. Lett. 71 (1993) 3251-3254.
arXiv:hep-lat/9308011; R. Narayanan, H. Neuberger, Chieterminant as an overlap of two vacua,
Nucl. Phys. B412 (1994) 574-606. arXiv:hep-lat/9307006\Nduberger, A practical implementation
of the overlap-Dirac operator, Phys. Rev. Lett. 81 (199&0421062. arXiv:hep-lat/9806025;

[2] P. H. Ginsparg, K. G. Wilson, A remnant of chiral symetrythe lattice, Phys. Rev. D25 (1982) 2649;

[3] M. Luscher, Exact chiral symmetry on the lattice and thegparg-Wilson relation, Phys. Lett. B428
(1998) 342-345. arXiv:hep-lat/9802011;

[4] N. Cundy, A renormalisation group derivation of the daprformulation, Nuclear Physics B824
(2010) 42. arXiv:0903.5521;

[5] B. Joo, I. Horvath, K. F. Liu, The Kentucky Noisy Monte @aalgorithm for Wilson dynamical
fermions, Phys. Rev. D67 (2003) 074505. arXiv:hep-latZi3B3;

[6] I. Horvath, A framework for systematic study of QCD vacmigtructure. II: Coherent lattice QCD
arXiv:hep-lat/0607031;

[7] M. Luscher, Trivializing maps, the Wilson flow and the HMiorithm arXiv:0907.5491;



