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1. Introduction

In Monte Carlo simulations of unquenched lattice QCD, a positive-definite fermion determi-
nant is required to ensure the convergence of the Markov chain. For Hybrid Monte Carlo (HMC)
simulation [1], it also requires that the pseudofermion action is positive-definite such that the pseud-
ofermion field can be simulated with a Gaussian noise. For QCD with two degenerate flavors, this
is guaranteed provided that det(D†) = det(D). The challenge of simulating one fermion flavor with
HMC is that it is nontrivial to write down a positive-definite pseudofermion action with determi-
nant exactly equal to det(D). So far, there are several strategies to simulate one fermion flavor with
HMC, e.g., to approximate D−1 by a polynomial of even degree [2], or to approximate (D†D)−1/2

by a rational polynomial function [3]. In this paper, we construct a positive-definite pseudofermion
action with determinant exactly equal to det(D), for Wilson and domain-wall fermions respectively.

The outline of this paper is as follows. In Sec. 2, we construct the pseudofermion action for
one-flavor Wilson fermion, as well as that with the Hasenbusch acceleration [4]. In Sec. 3, we
construct the pseudofermion action for one-flavor domain-wall fermion. In Sec. 4, we construct
the pseudofermion action for one-flavor optimal domain-wall fermion. In Sec. 5, we compare the
HMC simulations of 2 degenerate flavors with that of one flavor, for lattice QCD with optimal
domain-wall fermion. In Sec. 6, we conclude with some remarks.

2. Wilson fermion

In this section, we derive a positive-definite pseudofermion action which gives exactly the
determinant of the Wilson-Dirac operator

DW = W +m+∑
µ

tµγµ =

(
(W +m)1 ∑µ tµσµ

∑µ tµσ†
µ (W +m)1

)
, (2.1)

where

W = −1
2 ∑

µ

[
Uµ(x)δx+µ̂,y +U†

µ(x−µ)δx−µ̂,y
]
+4, tµ =

1
2

[
Uµ(x)δx+µ̂ ,y −U†

µ(x−µ)δx−µ̂,y
]
,

γµ =

(
0 σµ

σ †
µ 0

)
, σµ = (i1,σi),

and σi (i = 1,2,3) are Pauli matrices. Using the Schur decomposition, the determinant of (2.1) can
be written as

detDW = det(W +m)2 detWH , (2.2)

where WH is the Schur complement of DW , i.e.,

WH = W +m−∑
µ,ν

tµ
1

W +m
tνσ†

µσν . (2.3)

The positive definiteness of WH is asserted as follows. For any background gauge field, the
eigenvalues of W and (σ · t) satisfy the inequalities: 0 ≤ λ (W ) ≤ 8, and |λ (∑µ σµtµ)| ≤ 4. It
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follows that WH is positive-definite for m > 4. Now, if m is decreased from 4 to a smaller value,
then the smallest eigenvalue of (W + m) is also decreased. Suppose that at m = mcr (the largest
value), it becomes zero, then det(W + mcr) = 0, and WH(mcr) becomes singular, thus WH is no
longer positive-definite. From (2.2), we see that whenever WH(m) has a zero eigenvalue, DW (m)
also has a zero eigenvalue. On the other hand, when WH(m) is singular due to a zero eigenvalue of
(W + m), DW (m) does not necessarily have a zero eigenvalue, which follows from the inequality,
λmin(W + m) ≤ Re(λ (DW (m))) ≤ λmax(W + m). In other words, the largest m (i.e., mcr) which
gives det(W +m) = 0 is equal to or larger than the largest m which gives detDW (m) = 0.

Thus the pseudofermion action for one-flavor Wilson fermion can be written as

SPF = Φ†
1(W +m)−2Φ1 +Φ†

2(WH)−1Φ2 = Φ†
1(W +m)−2Φ1 −

(
0 Φ†

2

)
H−1

W

(
0

Φ2

)
(2.4)

where HW = γ5DW , Φ1 is a pseudofermion field without Dirac index, and Φ2 is a pseudofermion
field with 2 spinor components.

To generate the pseudofermion field Φ2 from a Gaussian random noise field Ξ2, we need
to take the square root of WH , i.e., Φ2 =

√
WHΞ2 . Here we use the Zolotarev optimal rational

approximation for the square root,

Φ2 =
√

WH Ξ2 '

(
p0 +

Napp

∑
l=1

pl

ql +W +m−∑µ,ν tµ
1

W+m tνσ†
µσν

)
Ξ2, (2.5)

where p0, pl and ql are expressed in terms of Jacobian elliptic functions. At first sight, the opera-
tions in (2.5) look formidable. However, since WH is the Schur complement of DW , each term in
(2.5) can be obtained by the inversion of (DW +qlP−), i.e.,(

0
Φ2

)
= P−

(
p0 +

Napp

∑
l=1

pl (DW +qlP−)−1

)(
0

Ξ2

)
. (2.6)

Note that one cannot apply the multi-shift conjugate gradient algorithm in (2.6), since P− does not
commute with DW . However, these Napp number of inversions can be speeded up using chronolog-
ical inversion method [5].

2.1 Wilson fermion with Hasenbusch acceleration

The idea of Hasenbusch’s method [4] is to introduce a heavy pseudofermion field (with mass
M > m) such that the speed of simulating both det(DW (m)/DW (M)) and det(DW (M)) is faster than
that of det(DW (m)). To apply Hasenbusch’s method, we consider

det
(

DW (m1)
DW (m2)

)
= det

(
W +m1

W +m2

)2

det
(

WH(m1)
W H(m2)

)
(2.7)

where

W H(m) ≡W +m−∑
µ ,ν

tµ
1

W +m
tνσµσ †

ν . (2.8)
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Now, using the Schur decomposition, we can prove that

det(DW (0)+m1P+ +m2P−)= det(W +m1)2 det[WH(m1)+∆m] = det(W +m2)2 det[W H(m2)−∆m],
(2.9)

where ∆m = m2 −m1 > 0. Using this relation, we can rewrite (2.7) as

det
(

DW (m1)
DW (m2)

)
= det

(
WH(m1)

WH(m1)+∆m

)
det

(
W H(m2)−∆m

W H(m2)

)
. (2.10)

Next we assert the positive definiteness of both operators on the RHS of (2.10). First, we assume
that m2 is sufficiently large such that (W +m2), WH(m2), and W H(m2) are positive-definite. Then,
the second factor on the RHS of (2.10) is positive-definite for m1 > mB

1 where mB
1 is the largest

value satisfying det[DW (0)+mB
1 P+ +m2P−] = 0, as a consequence of (2.9). Now, for the operator

WH(m1)(WH(m1)+∆m)−1 = (1+∆m/WH(m1))−1, we note that even if WH(m1) is not well-defined,
WH(m1)−1 = P−HW (m1)−1P− can still be well-defined. From (2.10), det(WH(m1)(WH(m1)+∆m)−1)
is positive-definite if both detDW (m1) and det[W H(m2)−∆m] are positive-definite. It follows that
both operators on the RHS of (2.10) are positive-definite for m1 > max(mA

1 ,mB
1 ), where mB

1 has
defined above, and mA

1 is the largest value satisfying detDW (mA
1 ) = 0.

Thus the pseudofermion action for one-flavor Wilson fermion with Hasenbusch acceleration
can be written as

SPF = Φ†
3

(
1+

∆m

WH(m1)

)
Φ3 +Φ†

4

(
1+

∆m

[W H(m2)−∆m]

)
Φ4

= Φ†
3Φ3 +Φ†

4Φ4 −∆m

(
0 Φ†

3

)
H−1

W (m1)

(
0

Φ3

)
+∆m

(
Φ†

4 0
)

(HW (0)+m1P+−m2P−)−1

(
Φ4

0

)
,

where Φ3 and Φ4 are pseudofermion fields with 2 spinor components.

3. Domain-wall fermion

The basic idea of domain-wall fermion is to use Ns layers of 4-d Wilson-Dirac fermions (with
nearest neighbor coupling in the 5-th dimension) such that the exactly chiral fermion fields emerge
at the boundary layers in the limit Ns → ∞ [6]. The domain-wall fermion operator can be defined
as

Ddwf(m) = W −m0 +∑
µ

γµtµ +M(m) (3.1)

M(m) = P+M+(m)+P−M−(m) (3.2)

M+(m)s,s′ =

{
δs′,s −δs′,s−1, 1 < s ≤ Ns,

δs′,s +mδs′,Ns , s = 1,
M−(m)s,s′ =

{
δs′,s −δs′,s+1, 1 ≤ s < Ns,

δs′,s +mδs′,1, s = Ns,
(3.3)

where m is the fermion mass, and m0 ∈ (0,2) is a parameter called "domain-wall height". Using
the Schur decomposition, the determinant of domain-wall fermion operator can be written as

detDdwf(m) = det [W −m0 +M+(m)]2 detWH(m) = det [W −m0 +M−(m)]2 det W H(m), (3.4)
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where

WH(m) = R5

(
W −m0 +M−(m)− tµ

1
W −m0 +M+(m)

tνσ†
µσν

)
(3.5)

W H(m) = R5

(
W −m0 +M+(m)− tµ

1
W −m0 +M−(m)

tνσµσ †
ν

)
. (3.6)

Here R5 is the reflection operator in the 5-th dimension, (R5)s,s′ = δs,Ns+s′−1, which is introduced
such that WH(m) and W H(m) are hermitian. After incorporating the contribution of the Pauli-
Villars fields, the fermion determinant of domain-wall fermion becomes

detDdwf(m)
detDdwf(1)

=
det [W −m0 +M+(m)]2 detWH(m)

det [W −m0 +M+(1)]2 det W H(1)
(3.7)

Using the Schur decomposition of [Ddwf(1)− (M+(1)−M+(m))P+], we obtain the relation

det [W −m0 +M+(m)]2 ·det [WH(m)+∆−(m)] = det [W −m0 +M−(1)]2 ·det
[
W H(1)−∆+(m)

]
,

(3.8)

where

[∆+(m)]s,s′ = (1−m)δs,Ns δs′,Ns , [∆−(m)]s,s′ = (1−m)δs,1 δs′,1. (3.9)

Using (3.8), we can rewrite (3.7) as

det [WH(m)/(WH(m)+∆−(m))] ·det
[(

W H(1)−∆+(m)
)
/W H(1)

]
,

and its inverse

det
[

1+∆−(m)
1

WH(m)

]
·det

[
1+∆+(m)

1
W H(1)−∆+(m)

]
, (3.10)

can be used to construct the pseudofermion action. Using (3.9), we can simplify (3.10) to

det
(

1+(1−m)
[

1
WH(m)

]
s=s′=1

)
·det

(
1+(1−m)

[
1

W H(1)−∆+(m)

]
s=s′=Ns

)
. (3.11)

Thus we can write the pseudofermion action for one-flavor domain-wall fermion as

SPF = Φ†
1Φ1 − (1−m)(0 Φ†

1) [γ5R5Ddwf(m)]−1
s=s′=1

(
0

Φ1

)

+ Φ†
2Φ2 +(1−m)(Φ†

2 0) [γ5R5Ddwf(1)−∆+(m)P+]−1
s=s′=Ns

(
Φ2

0

)
where Φ1 and Φ2 are pseudofermion fields (on the 4-dimensional lattice) with 2 spinor components.
Now we assert that the operators in (3.11) are positive-definite for m > 0. At m = 1, they are equal
to the identity operator, thus are positive-definite. As m is decreased to be less than one, their
positive definiteness will lose only if either of the determinants in (3.11) becomes zero or singular.
Using [W,M−(1)] = [W,M+(m)] = 0, and the fact that the eigenvalues of M−(1) and M+(m) have
non-zero imaginary parts, we immediately see that (W −m0 +M−(1)) and (W −m0 +M+(m))
cannot have zero eigenvalue for m > 0. Thus the operators in (3.11) are well-defined for m > 0.
Furthermore, since (3.10) is equal to the determinant of the massive overlap-Dirac operator with
polar approximation for the sign function of H = γ5Dw(2 + Dw)−1, thus for m > 0, it must be
positive and it follows that the operators in (3.11) are positive-definite.
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4. Optimal domain-wall fermion

For finite Ns, the chiral symmetry of the domain-wall fermion is not exact. However, one can
attain the (mathematically) maximal chiral symmetry by assigning each layer in the 5-th dimension
a different weight ωs, according to the formula derived in Ref. [7]. Then the effective 4D Dirac op-
erator is exactly equal to the overlap-Dirac operator with Zolotarev optimal rational approximation
to the sign function of Hw. The optimal domain-wall fermion operator [7] is defined as

Dopt(m) = ωDW (−m0)(1+L(m))+(1−L(m)) , L(m) = P+L+(m)+P−L−(m), (4.1)

where

L+(m)s,s′ =

{
δs′,s−1, 1 < s ≤ Ns,

−mδs′,Ns , s = 1,
, L−(m)s,s′ =

{
δs′,s+1, 1 ≤ s < Ns,

−mδs′,1, s = Ns.
(4.2)

Here ω denotes the diagonal matrix of the weights {ωs,s = 1, · · · ,Ns}. Moreover, we can construct
ω such that it satisfies R5ω = ωR5. To derive a positive-definite pseudofermion action for one
flavor, we can start from

D ′
opt(m) = ωDW (−m0)+(1−L(m))/(1+L(m)) (4.3)

which is different from Dopt(m) by a matrix factor independent of the gauge field. Using the
same technique we have used for the case of domain-wall fermion, we obtain the positive-definite
pseudofermion action as follows1

SPF = Φ†
1Φ1 +Φ†

2Φ2 −
(

1−m
1+m

)
(0 (−1)sΦ†

1)
[
γ5R5D

′
opt(m)

]−1
s,s′

(
0

(−1)s′Φ1

)

+
(

1−m
1+m

)
((−1)sΦ†

2 0)
[

γ5R5D
′
opt(1)−R5

(
1−L(1)
1+L(1)

− 1−L(m)
1+L(m)

)
P+

]−1

s,s′

(
(−1)s′Φ2

0

)
(4.4)

where Φ1 and Φ2 are pseudofermion fields with 2 spinor components on the 4-dimensional lattice.

5. Numerical test

We compare the efficiency of HMC simulation of 2-flavor and (1+1)-flavor QCD with optimal
domain-wall quarks, on the 123 × 24× 16(Ns) lattice. For the gluon part, we use Iwasaki gauge
action at β = 2.30. In the molecular dynamics, we use the Omelyan integrator [8], and the Sexton-
Weingarten multiple-time scale method [9]. The time step for the gauge field (∆τGauge) is the same
for both 2-flavor and (1+1)-flavor cases, while the time step (∆τPF) for the pseudofermion field in
the (1+1)-flavor case is 4 times larger than that for the 2-flavor case such that the acceptance rate
is roughly the same for both cases. We use conjugate gradient (CG) with mixed precision for the
inversion of the quark matrix (with even-odd preconditioning). The length of each trajectory is set
to 2. After discarding 300 trajectories for thermalization, we accumulate 100 trajectories for the
comparison of efficiency. Our results are given in Table.1. We see that acceptance rate is almost
the same for (1 + 1)-flavor and 2-flavor simulations. If auto-correlation time is the same, then the
efficiency of HMC can be estimated by the total acceptance divided by the CG iteration number,
and the efficiency ratio for 2-flavor and (1+1)-flavor is about 3 : 2.

1Detailed derivation will be given in a forthcoming paper.
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m Nf N(HB)
Iter /103 N(MD)

Iter /103 N(Total)
Iter /103 Acceptance Acceptance/N(Total)

Iter
0.019 1+1 75 (1) 260 (1) 345 (1) 0.88 (3) 2.6(1)×10−6

2 0.6 (1) 239 (2) 240 (2) 0.90 (3) 3.8(2)×10−6

0.038 1+1 54 (1) 125 (1) 179 (1) 0.90 (3) 5.0(2)×10−6

2 0.6 (1) 112 (1) 113 (1) 0.91 (3) 8.0(3)×10−6

Table 1: Comparison of HMC efficiency for the 2-flavor and (1+1)-flavor QCD with optimal domain-wall
quarks. The step size for the gauge field ∆τGauge is 0.007(0.010) for m = 0.019(0.038). while the step size
∆τPF for (1+1)-flavor pseudofermions is 0.14(0.20) for m = 0.019(0.038), which is 4 times larger than that
for the 2-flavor case. Here, N(HB)

Iter , N(MD)
Iter , and N(Total)

Iter are the average CG iterations for one trajectory (for
generating initial pseudofermion fields, molecular dynamics, and their sum respectively).

6. Concluding remark
We have constructed a positive-definite pseudofermion action for one fermion flavor in lattice

gauge theory, with determinant exactly equal to that of the lattice Dirac operator, for the Wilson-
Dirac operator, and the (optimal) domain-wall fermion operator respectively. Evidently, these one-
flavor positive-definite actions are useful for the HMC simulations in nonperturbative studies of the
Standard Model (SM), as well as those beyond the SM. Our numerical tests show that the step size
∆τPF (for the pseudofermion field in the molecular dynamics) for the (1+1)-flavor QCD can be 4
times larger than that for the 2-flavor case, yet with the same acceptance rate. The efficiency ratio
for HMC with 2-flavor and (1 + 1)-flavor is about 3 : 2. With the positive-definite pseudofermion
action (4.4) for the strange quark, TWQCD Collaboration is performing the HMC simulation of
(2+1)-flavor QCD on the 163 ×32×16 lattice, using a GPU cluster [10].
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