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For Hermitian positive definite linear systems and eigare@roblems, the eigCG algorithm is a
memory efficient algorithm that solves the linear systemsamaliltaneously computes some of its
eigenvalues. The algorithm is based on the Conjugate-@ma@dCG) algorithm, however, it uses
only a window of the vectors generated by the CG algorithnotopute approximate eigenvalues.
The number and accuracy of the eigenvectors can be incregsalving more right-hand sides.
For Hermitian systems with multiple right-hand sides, tbmputed eigenvectors can be used to
speed up the solution of subsequent systems. The algoristiested on Lattice QCD problems
by solving the normal equations and was shown to give largedpp factors and to remove
the critical slowing down as we approach light quark masdésre, an extension to the non-
symmetric case based on the two-sided Lanczos algorithimés.gThe new algorithm is tested
on Lattice QCD problems and is shown to give very promisirsyits. We also study the removal
of the critical slowing down and compare results with thoséhe eigCG algorithm. We also
discuss the case when the systergisiermitian.
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1. Introduction

Computation of various hadronic properties from Lattice QCD requirdsi&tian of the con-
tribution of disconnected quark loops. This include, for example, the niaks aeutral pion, the
spectrum of Isospin singlet mesons[1], and the contribution of straeme|sarks to the electro-
magnetic form factors of the proton[2],[3]. Evaluation of the contributibdieconnected quark
loops requires knowledge of the quark propagator from all sites to al sitehe lattice (all-to-all
propagators)[4, 5, 6]. In all-to-all propagator methods, one is requd compute the action of the
inverse of the lattice Dirac operat@ron a particular set of sources i=1,2,...,N;, by solving
the linear systems,

A =b, i=12...N. (1.1)

Typical values ofN, are ¢(50— 100) and large values df, are required for smaller statistical
noise errors. In addition, for small quark masses, solving Eqs.1.1 usindasd iterative methods,
such as GMRES or BiCGStab, converges very slowly (critical slowingndplaenomena). It has
been realized that critical slowing down could be removed by computing eftatidg the lowest
eigenmodes oA (see [7] for a review of deflation methods in lattice QCD).

In [8] we have given the Incremental eigCG algorithm for Hermitian, pasitiefinite sys-
tems. The eigCG part of the algorithm solves a single system using the CtnfBgadient (CG)
algorithm and simultaneously computes few eigenvectors with smallest eigesv@iigCG uses
only a small size window of the CG residuals for computing eigenvalues.ditiam, the standard
CG part of eigCG for solving the linear system is totally unaffected by the otatipn of the
eigenvalues. For multiple right-hand sides, Incremental eigCG solves ashabt of the linear
systems using eigCG and concurrently accumulates more eigenvectosrad.déhe remaining
systems are then solved with CG after deflating the computed eigenvectarthianitial guesses.
Incremental eigCG was tested on large Lattice QCD problems [8] with very smatk masses
and was found to remove the critical slowing down as well as speed up liteosdor multiple
right-hand sides through deflation. Since the Dirac marig non-Hermitian, it was necessary to
apply Incremental eigCG to the normal equations,

ATA =ATb, i=1,2,...,N. (1.2)

In this report, we present and test an extension of the ideas of eigCi&amctemental version to
the non-Hermitian case. There are three motivations for studying this extem®srst, converting
the non-Hermitian system 1.1 into the Hermitian, positive definite system 1.2 leaalsntre
difficult system as the new system will have a worse condition number.n8gsolving the non-
Hermitian system will give eigenvalues Afdirectly which could be useful for other applications.
Finally, one would like to compare the efficiency of removing the critical slowdog/n when
solving the systems 1.1 and 1.2. In the extension to non-Hermitian case, vesltiriinctionality
to the BIiCG algorithm, following closely what was done in the Hermitian case, tlmtsafor
computing few eigenvalues using only a limited size window of the BICG residlaltis case
we’ll need to compute left and right eigenvectors/f The modified BiCG algorithm will be
called eigBiCG. For multiple right-hand sides, we solve a subset of the syatnuseigBiCG and
accumulate more eigenvectors and, hopefully, improve their accuraayarsincremental scheme
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as was done in the Hermitian case. For the remaining systems, we deflate theneotsyof the
computed eigenvectors and then use BiCGStab to solve them. Using BiCGS&sduing BiCG
is motivated by the fact that BiICGStab normally converges faster than Bi@ZHa&se BiCG for
computing eigenvectors because the BiCG residuals and parameterssitpribeaelated to the
Bi-Lanczos vectors and projection matrix. We also discuss simplifications Weatisfies the
ys-Hermiticity conditionysA = Al y.

In the following, the dot product of two vectors will be denoted(twv) := w'v, the Euclidean
norm of a vector is denoted by|| and the complex conjugate of a numlzerill be denoted by
z. The function[zr,l, D] = eig(C) returns the right eigenvectors, the left eigenvectord and the
eigenvalues arralp sorted according to a user chosen criteria.

2. Incremental eigBiCG algorithm

In the BiLanczos algorithm one solves the dual systéms: b andA' = b. Givenxg andxXg
initial guesses, the algorithm builds a bi-orthogonal basis for the Krylbgsaces,

(%/(A,V]_) = {Vl,AV]_,AZV]_, .. } (21)
(AT wy) = {wy, Alwy, AP, .,

wherevy =ro/||ro||, ro=b— AXg, fo= b— A%y andw; = fo/(rgfo), o) thaiwlvl =1. Normally,
b=h, % =X, andwy = vi. LetV(™ = {vi,vo,... . Vin}, W™ = {wy, Wy, ..., W} be the bi-
orthogonal bases o, and.#, andH™ =wMmTaA/(™ the projection matrix. Ley™ andz™

be the right and left eigenvectors Bf™. The approximate right and left Ritz eigenvectorstof
are given byy(™ = VvmyM andz(M = WM zM respectively. In the BiCG algorithm, the bi-
orthogonal baseg, W and the projection matrikl are not computed explicitly. The basis vectors
are obtained as the right and left BiCG residuals, while the métrig obtained from the BiCG
scalar coefficients. This can be done by noting that njrj_, andw; = {;fj_1 for j =1,2,...,
with n; and{; satisfying (wj,v;) = 1. In the following, we choose a normalization such that
||vj|| =1 andnj is real positive, however, other normalizations that maintain the biorthdigook

w; andv; could be used. From these relations, and the biorthogonality of the BiGduads, the
elements oH could be recovered from the scalar coefficients of BiCG without extra medgkor
products.

Similar to eigCG, the eigBiCG algorithm adds functionality to the standard BiCG itligor
for computing few eigenvalues and eigenvectoré afsing only a window of sizen of the BiCG
residuals. Fonev requested eigenvalues with a chosen criterion (smallest absolute vale; fo
ample), the eigenvalue part of eigBiCG computes eigenvectors from thensirel size(m— 1)
subspaces. The search subspatgs, W™ and the projection matrixl(™ are then restarted
with these Bev computed eigenvectors which are inexpensively biorthogonalized in gffiodent
space. The details of this part are given in AlgoritBif€G — eigen. Note that we neeth > 2nev.
The full eigBICG algorithm for solving the linear systefst = b and computingiev eigenvalues
and eigenvectors using a search subspace of dimensi®given in AlgorithmeigBiCG. In order
to compute the elements of thee + 1-th row and column oH after restarting we nee8vone, 1
andA™Wone,; 1 which will be given fromAr;_, andATfj,l. This can be accomplished by using the
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relationspj_1 =rj_1+ Bj—2pj—2 andpj_1 = fj_1 + Ej_zﬁj_z. So, we need to storép andATp
products whervs = m— 1, wherevsis the current size of the search subspaces.

Algorithm: BiCG — eigen(nev, m,V (M w(m H(m))

. [y(m),z(rm’ E(m)] =eig(HM), [y(mfl)7z<mfl)’ E(M1)] = eig(H (m-1)).

¢ Append a zero at the end of each of the vecydfs V), zZ™1),

e [§,4 = Bi-orthogonalize [y(lm), gm,..., (. y(lm_l), gm—1>,...7yﬂ;‘;1>] against
2™ A" e 2™V A AR Y). Note thaty™ ZM are already

biorthogonal. Need only to extend biorthogonality to thet @&f vectors.

T=7ZHMy,  [uqg,A]=eig(T).

U=Vmg, Q=wmz,

e Restart:
SV =] W =T v =U W =Q
~H™=0; i,j=12....m, Hi(,:n):/\i fori=1,2,..,2nev.

i

Algorithm Incremental eigBICG

Given initial guesses fork=1,2,...,N;:
1. Chooseevymandset)j=[ |, U =[ J,and H=][ ].
2. Fork=12,....m
o If Uy is not empty, setx§ = x5+ Uy d, whereHd = U, (b — AX).
e solve the system usinggBiCG(nev,m,V,W).
e Compute]V’,W’] = biorthogonalizgV, W] agains{U;,U,].

H  u'a/
e Compute the newd = (W’TAUr WI’TAV’>

e Add the new vectordJ; = [U; W] andU, = [U, V']
3. FORk=ni+1,n+2...,Ne

o x5 =x5+U;d, whereHd = U, (b* — AX).

e Solve the system using BiCGStab.

e Repeat the deflation and restart BiCGStab when the residuldss than
DefTol « ||b]|.
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Algorithm:

eigBiCG(nev,m,A,U, Q)

1. Choose initial guess, computerg = b— Axg, and sefpg = ro.

2. Chooseg such thatfo,rg) # 0, and sepg = fo. Setpy = (fo,rp), vs= 0.

3. For j=1,2,... till convergence

ComputeAp;j_; andATpj_1.

Computeo; 1 = (fj_1,Apj-1) andaj 1 = % Setxj = Xj_1+ 0j_1Pk_1.
If vs=m—1,q=Apj_1,5=A"p;_1.

If vs=m

— Compute eigenvalues and restart the search subspace gactiproma-
trix using the algorithnBiCG — eigen(nev, m,V,W,H). Setvs = 2nev.

— Compute theHy onev+1 andHopey 1k for k=1,2,..., 2nev.
Honev11k = ”,rgjj%llu(AT Bj-1— Ej72S)TVk-
Hy 2nev+1 = mWI(Apj—l — Bj—20).

1
Irj—all

lIrj-all &
Pj—l rJ_l

Vs=Vs+1, Ws= Mj—1, Ws =

Computerj =rj_1 — aj_1Apj_1 andrj = fi_1 — aj_1ATpj_1.

Setp; = (fj,rj) and computg8j_1 = %-

Setpj =rj+Bj_1pj—1 andp; = f; +B_j71ﬁj71-

Compute the diagonal matrix elements:

e _ 1 _ 1 Bi-2

if j=1,Hysyws= @ elseHysys = @1 + @

If vs < m, compute the off-diagon& matrix elements:

ricall Bi_1 Irill _a
H — l j J H = — =
vsvs+1 TNl aj—g>  vstlys rjall aj-1

If ||rj]| <tol =||b|| for a given tolerancéol, stop the iterations.

4. UsingV ™, W) andH ™) compute the finahev eigenvalues and eigenvectors:
Y 299 A = ig(HOW), L) —ysyine) e — i) )

For multiple right-hand sides, we use the Incremental eigBiCG algorithm. Afteing a sub-
set of the right-hand sides and accumulating the deflation subsppeeslU;, we use BiCGStab
on the remaining systems after deflating the eigenvector components. Simpated eigenvec-
tors are not exact we might need to repeat the deflation step and re€@@Etb depending on
the accuracy of the eigenvectors. The deflation restart tolerance id Baifdol. In addition, final
eigenvectors computed from incremental eigBiCG could be computed, $s@ge using Raleigh-

Ritz with U}, andU; as search subspaces.
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3. Results

The algorithm is preliminary tested on two quenched Wilson lattice QCD matrices véii e
odd preconditioning ne&kitica. The first is a 8 lattice atB = 5.5 with mg = —1.25 where
K= ﬁ. This case will be labeled &CD49K — eo since the Dirac matrix will be of size 4952
before the even-odd precondtioning. The second is*datice atf3 = 5.8 with mg = —0.95. This
case will be labeled a@CD24XK — eo. We first compare the lowest eigenvalues computed with
eigBIiCG to those computed with un-restarted BiCG in which all the residualsst@med. As seen
from Table 1, the results from eigBiCG with a limited storage gives eigenvailudgse agreement
with un-restarted BiCG where all the residuals were stored. We next fmwyncremental eig-
BiCG could speed up the solution with many right-hand sides. In Figure 1hawe the effect of
deflation for different choices afev andm after solvingnl right-hand sides, showing a speed up
factor of about 5. In Figure 2, we show the effect of reducing the quark mass on the ewofib
iterations used bBICGSab and compare it to the case when solving the normal equations using
Incremental EigCG. The results show thdhcremental eigBiCG is competitive witheigCG but
not necessarily better. We note that b&iICGSab andCG applied to the normal equations use
two matrix-vector products per iteration. A better comparison between the twwdserequires
experiments on larger lattice QCD matrices.

Method Eigenvalues Residuals
eigBiCG | 3.46577e-03-1.07644e-13i 1.71e-07
1.35450e-02+1.72604e-02i 1.69e-06
1.35450e-02-1.72604e-02i 1.37e-06
2.82870e-02+1.09765e-07i 2.40e-03
1.51950e-02-2.26792e-02i 9.35e-01
BiCG | 3.46577e-03+7.84451e-15i 1.43e-08
1.35450e-02+1.72604e-02i 1.72e-06
1.35450e-02-1.72604e-02i 1.40e-06
2.82870e-02+1.09755e-07i 2.39e-03
1.36523e-02+4.16515e-02i 1.52e-06

Table 1: Comparing lowest 5 eigenvalues for QCD249K-eo obtainedh wit-restarted BiCG and with
eigBiCG usingnev = 15 andm = 40. The tolerance for the linear system was chosen teebe0B and the
system converged in 592 iterations

4. ys-Hermitian systems

For Wilson and Clover fermions we have the symmetry
A = Ay, (4.1)

Using this symmetry we can replace the costly matrix-vector multiplication jitin eigBiCG

with the cheaper multiplication wityg. In BiCG, if we chose g = ysrg then it follows that | = |

and the search directioms = yp; for subsequent iterations. Also, eigenvalues will be real or come
in pairs of conjugate values, and left eigenvectors are computable fghitnones, as long as we
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Figure 1: Deflated BiCGStab using eigenvectors computed with eigBi@®1 right-hand sides for differ-
ent choices ohev andm. No restarting was needeBéf Tol = 0 was used).
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Figure 2: Removing critical slowing down using eigBiCG and eigCG &pko the normal equations.

keep eigenvectors corresponding to conjugate pairs. Using thesensglatie can simplify the
first phase ofincremental eigBiCG where eigenvalues are computed. For illustration, we show
preliminary results comparing the two versions of the algorithm in Figure 3.ra@$idt shows a
similar performance In which only the right eigenvectors need to be stokalere matrix-vector
multiplication withA' is avoided.

5. Conclusions

Extending the ideas behind the successful eigCG algorithm to non-Hermyséens gave
very promising results. The new algorithm gave access to the left andaiggrvectors of the
Dirac matrix while solving the linear systems using only a limited storage. It wassalson to
remove the critical slowing down and to be competitive with eigCG. Jgdfermitian systems,
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QCD49K-eo0, nev=20, m=60, n1=10

10 \ ‘ I
——BICGSTAB
— deflated BICGSTAB, eigBICG, 200 vectors
10° deflated BICGSTAB, 1A eigBICG, 177 vectors||

Residual Norm
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Number of Iterations

Figure 3: Comparison of deflation witls-Hermitian algorithm.

preliminary study shows that storage of the left eigenvectors and multiplicaitbnA™ could be
avoided.
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