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For Hermitian positive definite linear systems and eigenvalue problems, the eigCG algorithm is a

memory efficient algorithm that solves the linear system andsimultaneously computes some of its

eigenvalues. The algorithm is based on the Conjugate-Gradient (CG) algorithm, however, it uses

only a window of the vectors generated by the CG algorithm to compute approximate eigenvalues.

The number and accuracy of the eigenvectors can be increasedby solving more right-hand sides.

For Hermitian systems with multiple right-hand sides, the computed eigenvectors can be used to

speed up the solution of subsequent systems. The algorithm was tested on Lattice QCD problems

by solving the normal equations and was shown to give large speed up factors and to remove

the critical slowing down as we approach light quark masses.Here, an extension to the non-

symmetric case based on the two-sided Lanczos algorithm is given. The new algorithm is tested

on Lattice QCD problems and is shown to give very promising results. We also study the removal

of the critical slowing down and compare results with those of the eigCG algorithm. We also

discuss the case when the system isγ5-Hermitian.
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1. Introduction

Computation of various hadronic properties from Lattice QCD requires evaluation of the con-
tribution of disconnected quark loops. This include, for example, the mass of the neutral pion, the
spectrum of Isospin singlet mesons[1], and the contribution of strange sea quarks to the electro-
magnetic form factors of the proton[2],[3]. Evaluation of the contribution of disconnected quark
loops requires knowledge of the quark propagator from all sites to all sites on the lattice (all-to-all
propagators)[4, 5, 6]. In all-to-all propagator methods, one is required to compute the action of the
inverse of the lattice Dirac operatorA on a particular set of sourcesbi, i = 1,2, . . . ,Nr, by solving
the linear systems,

Axi = bi, i = 1,2, . . . ,Nr. (1.1)

Typical values ofNr areO(50− 100) and large values ofNr are required for smaller statistical
noise errors. In addition, for small quark masses, solving Eqs.1.1 using standard iterative methods,
such as GMRES or BiCGStab, converges very slowly (critical slowing down phenomena). It has
been realized that critical slowing down could be removed by computing and deflating the lowest
eigenmodes ofA (see [7] for a review of deflation methods in lattice QCD).

In [8] we have given the Incremental eigCG algorithm for Hermitian, positive definite sys-
tems. The eigCG part of the algorithm solves a single system using the Conjugate Gradient (CG)
algorithm and simultaneously computes few eigenvectors with smallest eigenvalues. EigCG uses
only a small size window of the CG residuals for computing eigenvalues. In addition, the standard
CG part of eigCG for solving the linear system is totally unaffected by the computation of the
eigenvalues. For multiple right-hand sides, Incremental eigCG solves a smallsubset of the linear
systems using eigCG and concurrently accumulates more eigenvectors as desired. The remaining
systems are then solved with CG after deflating the computed eigenvectors from the initial guesses.
Incremental eigCG was tested on large Lattice QCD problems [8] with very smallquark masses
and was found to remove the critical slowing down as well as speed up the solution for multiple
right-hand sides through deflation. Since the Dirac matrixA is non-Hermitian, it was necessary to
apply Incremental eigCG to the normal equations,

A†Axi = A†bi, i = 1,2, . . . ,Nr. (1.2)

In this report, we present and test an extension of the ideas of eigCG andits incremental version to
the non-Hermitian case. There are three motivations for studying this extension. First, converting
the non-Hermitian system 1.1 into the Hermitian, positive definite system 1.2 leads toa more
difficult system as the new system will have a worse condition number. Second, solving the non-
Hermitian system will give eigenvalues ofA directly which could be useful for other applications.
Finally, one would like to compare the efficiency of removing the critical slowingdown when
solving the systems 1.1 and 1.2. In the extension to non-Hermitian case, we first add functionality
to the BiCG algorithm, following closely what was done in the Hermitian case, that allows for
computing few eigenvalues using only a limited size window of the BiCG residuals.In this case
we’ll need to compute left and right eigenvectors ofA. The modified BiCG algorithm will be
called eigBiCG. For multiple right-hand sides, we solve a subset of the systemsusing eigBiCG and
accumulate more eigenvectors and, hopefully, improve their accuracy using an incremental scheme
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as was done in the Hermitian case. For the remaining systems, we deflate the components of the
computed eigenvectors and then use BiCGStab to solve them. Using BiCGStab instead of BiCG
is motivated by the fact that BiCGStab normally converges faster than BiCG. We chose BiCG for
computing eigenvectors because the BiCG residuals and parameters can easily be related to the
Bi-Lanczos vectors and projection matrix. We also discuss simplifications when A satisfies the
γ5-Hermiticity conditionγ5A = A†γ5.

In the following, the dot product of two vectors will be denoted by(w,v) := w†v, the Euclidean
norm of a vector is denoted by||v|| and the complex conjugate of a numberz will be denoted by
z̄. The function[zr,zl,D] = eig(C) returns the right eigenvectorszr, the left eigenvectorszl and the
eigenvalues arrayD sorted according to a user chosen criteria.

2. Incremental eigBiCG algorithm

In the BiLanczos algorithm one solves the dual systemsAx = b andA†x̂ = b̂. Givenx0 andx̂0

initial guesses, the algorithm builds a bi-orthogonal basis for the Krylov subspaces,

K (A,v1) = {v1,Av1,A
2v1, . . .} (2.1)

ˆK (A†,w1) = {w1,A
†w1,A

†2w1, . . .},

wherev1 = r0/||r0||, r0 = b−Ax0, r̂0 = b̂−A†x̂0 andw1 = r̂0/(r†
0r̂0), so thatw†

1v1 = 1. Normally,
b̂ = b, x̂0 = x0, andw1 = v1. Let V (m) = {v1,v2, . . . ,vm}, W (m) = {w1,w2, . . . ,wm} be the bi-
orthogonal bases ofK , and ˆK , andH(m) = W (m)†AV (m) the projection matrix. Lety(m) andz(m)

be the right and left eigenvectors ofH(m). The approximate right and left Ritz eigenvectors ofA
are given byY (m) = V (m)y(m) andZ(m) = W (m)z(m) respectively. In the BiCG algorithm, the bi-
orthogonal basesV, W and the projection matrixH are not computed explicitly. The basis vectors
are obtained as the right and left BiCG residuals, while the matrixH is obtained from the BiCG
scalar coefficients. This can be done by noting thatv j = η jr j−1 andw j = ζ j r̂ j−1 for j = 1,2, . . . ,
with η j and ζ j satisfying(w j,v j) = 1. In the following, we choose a normalization such that
||v j||= 1 andη j is real positive, however, other normalizations that maintain the biorthogonality of
w j andv j could be used. From these relations, and the biorthogonality of the BiCG residuals, the
elements ofH could be recovered from the scalar coefficients of BiCG without extra matrix-vector
products.

Similar to eigCG, the eigBiCG algorithm adds functionality to the standard BiCG algorithm
for computing few eigenvalues and eigenvectors ofA using only a window of sizem of the BiCG
residuals. Fornev requested eigenvalues with a chosen criterion (smallest absolute value, for ex-
ample), the eigenvalue part of eigBiCG computes eigenvectors from the sizem and size(m−1)

subspaces. The search subspacesV (m), W (m) and the projection matrixH(m) are then restarted
with these 2nev computed eigenvectors which are inexpensively biorthogonalized in the coefficient
space. The details of this part are given in AlgorithmBiCG− eigen. Note that we needm > 2nev.
The full eigBiCG algorithm for solving the linear systemAx = b and computingnev eigenvalues
and eigenvectors using a search subspace of dimensionm is given in AlgorithmeigBiCG. In order
to compute the elements of the 2nev+1-th row and column ofH after restarting we needAv2nev+1

andA†w2nev+1 which will be given fromAr j−1 andA†r̂ j−1. This can be accomplished by using the
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relationsp j−1 = r j−1 + β j−2p j−2 and p̂ j−1 = r̂ j−1 + β̄ j−2 p̂ j−2. So, we need to storeAp andA† p̂
products whenvs = m−1, wherevs is the current size of the search subspaces.

Algorithm: BiCG− eigen(nev,m,V (m),W (m),H(m))

• [y(m),z(m),E(m)] = eig(H(m)), [y(m−1),z(m−1),E(m−1)] = eig(H(m−1)).

• Append a zero at the end of each of the vectorsy(m−1),z(m−1).

• [ỹ, z̃] = Bi-orthogonalize [y(m)
1 ,y(m)

2 , . . . ,y(m)
nev ; y(m−1)

1 ,y(m−1)
2 , . . . ,y(m−1)

nev ] against

[z(m)
1 ,z(m)

2 , . . . ,z(m)
nev ; z(m−1)

1 ,z(m−1)
2 , . . . ,z(m−1)

nev ]. Note that y(m),z(m) are already
biorthogonal. Need only to extend biorthogonality to the rest of vectors.

• T = z̃†H(m)ỹ, [u,q,Λ] = eig(T ).

• U = V (m)ỹu, Q = W (m)z̃q.

• Restart:

– V (m) = [ ], W (m) = [ ], V (m)
1:2nev = U, W (m)

1:2nev = Q.

– H(m)
i, j = 0; i, j = 1,2, . . . ,m, H(m)

i,i = Λi for i = 1,2, ..,2nev.

Algorithm Incremental eigBICG

Given initial guessesxk
0 for k = 1,2, . . . ,Nr:

1. Choosenev,m and setUl = [ ], Ur = [ ], and H = [ ].

2. For k = 1,2, . . . ,n1

• If Ur is not empty, setxk
0 = xk

0 +Urd, whereHd = U†
l (bk −Axk

0).

• solve the system usingeigBiCG(nev,m,V,W ).

• Compute[V ′,W ′] = biorthogonalize[V,W ] against[Ur,Ul ].

• Compute the newH =

(

H U†
l AV ′

W ′†AUr W ′†AV ′

)

• Add the new vectors:Ul = [Ul W ′] andUr = [Ur V ′].

3. FORk = n1 +1,n1 +2, . . . ,Nr

• xk
0 = xk

0 +Urd, whereHd = U†
l (bk −Axk

0).

• Solve the system using BiCGStab.

• Repeat the deflation and restart BiCGStab when the residual is less than
De f Tol ∗ ||b||.

4
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Algorithm: eigBiCG(nev,m,Λ,U,Q)

1. Choose initial guessx0, computer0 = b−Ax0, and setp0 = r0.

2. Choose ˆr0 such that(r̂0,r0) 6= 0, and set ˆp0 = r̂0. Setρ0 = (r̂0,r0), vs = 0.

3. For j = 1,2, . . . till convergence

• ComputeAp j−1 andA† p̂ j−1.

• Computeσ j−1 = (p̂ j−1,Ap j−1) andα j−1 =
ρ j−1
σ j−1

. Setx j = x j−1 +α j−1pk−1.

• If vs = m−1, q = Ap j−1, s = A† p̂ j−1.

• If vs = m

– Compute eigenvalues and restart the search subspace and projection ma-
trix using the algorithmBiCG− eigen(nev,m,V,W,H). Setvs = 2nev.

– Compute theHk,2nev+1 andH2nev+1,k for k = 1,2, . . . ,2nev.

H2nev+1,k =
‖r j−1‖

ρ j−1
(A† p̂ j−1− β̄ j−2s)†vk.

Hk,2nev+1 = 1
‖r j−1‖

w†
k(Ap j−1−β j−2q).

• vs = vs+1, vvs = 1
‖r j−1‖

r j−1, wvs =
‖r j−1‖

ρ̄ j−1
r̂ j−1.

• Computer j = r j−1−α j−1Ap j−1 andr̂ j = r̂k−1− ᾱ j−1A† p̂ j−1.

• Setρ j = (r̂ j,r j) and computeβ j−1 =
ρ j

ρ j−1
.

• Setp j = r j +β j−1p j−1 and p̂ j = r̂ j + β̄ j−1 p̂ j−1.

• Compute the diagonalH matrix elements:
if j = 1, Hvs,vs = 1

α j−1
, elseHvs,vs = 1

α j−1
+ β j−2

α j−2
.

• If vs < m, compute the off-diagonalH matrix elements:

Hvs,vs+1 = −
‖r j−1‖

‖r j‖

β j−1
α j−1

, Hvs+1,vs = −
‖r j‖

‖r j−1‖
1

α j−1
.

• If ||r j|| ≤ tol ∗ ||b|| for a given tolerancetol, stop the iterations.

4. UsingV (vs), W (vs) andH(vs) compute the finalnev eigenvalues and eigenvectors:
[y(vs),z(vs),Λ(vs)] = eig(H(vs)), U (nev) = V (vs)y(nev), Q(nev) = W (vs)z(vs).

For multiple right-hand sides, we use the Incremental eigBiCG algorithm. After solving a sub-
set of the right-hand sides and accumulating the deflation subspacesUl andUr, we use BiCGStab
on the remaining systems after deflating the eigenvector components. Since computed eigenvec-
tors are not exact we might need to repeat the deflation step and restart BiCGStab depending on
the accuracy of the eigenvectors. The deflation restart tolerance is called De f Tol. In addition, final
eigenvectors computed from incremental eigBiCG could be computed, if necessary, using Raleigh-
Ritz with Ul, andUr as search subspaces.
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3. Results

The algorithm is preliminary tested on two quenched Wilson lattice QCD matrices with even-
odd preconditioning nearκcritical . The first is a 84 lattice atβ = 5.5 with mq = −1.25 where
κ = 1

8+2mq
. This case will be labeled asQCD49K−eo since the Dirac matrix will be of size 49,152

before the even-odd precondtioning. The second is a 124 lattice atβ = 5.8 with mq = −0.95. This
case will be labeled asQCD249K − eo. We first compare the lowest eigenvalues computed with
eigBiCG to those computed with un-restarted BiCG in which all the residuals werestored. As seen
from Table 1, the results from eigBiCG with a limited storage gives eigenvaluesin close agreement
with un-restarted BiCG where all the residuals were stored. We next studyhow incremental eig-
BiCG could speed up the solution with many right-hand sides. In Figure 1, we show the effect of
deflation for different choices ofnev andm after solvingn1 right-hand sides, showing a speed up
factor of about 2.5. In Figure 2, we show the effect of reducing the quark mass on the number of
iterations used byBiCGStab and compare it to the case when solving the normal equations using
Incremental EigCG. The results show thatIncremental eigBiCG is competitive witheigCG but
not necessarily better. We note that bothBiCGStab andCG applied to the normal equations use
two matrix-vector products per iteration. A better comparison between the two methods requires
experiments on larger lattice QCD matrices.

Method Eigenvalues Residuals
eigBiCG 3.46577e-03-1.07644e-13i 1.71e-07

1.35450e-02+1.72604e-02i 1.69e-06
1.35450e-02-1.72604e-02i 1.37e-06
2.82870e-02+1.09765e-07i 2.40e-03
1.51950e-02-2.26792e-02i 9.35e-01

BiCG 3.46577e-03+7.84451e-15i 1.43e-08
1.35450e-02+1.72604e-02i 1.72e-06
1.35450e-02-1.72604e-02i 1.40e-06
2.82870e-02+1.09755e-07i 2.39e-03
1.36523e-02+4.16515e-02i 1.52e-06

Table 1: Comparing lowest 5 eigenvalues for QCD249K-eo obtained with un-restarted BiCG and with
eigBiCG usingnev = 15 andm = 40. The tolerance for the linear system was chosen to be 1e−08 and the
system converged in 592 iterations

4. γ5-Hermitian systems

For Wilson and Clover fermions we have the symmetry

γ5A = A†γ5. (4.1)

Using this symmetry we can replace the costly matrix-vector multiplication withA† in eigBiCG
with the cheaper multiplication withγ5. In BiCG, if we chose ˆr0 = γ5r0 then it follows that ˆr j = γ5r j

and the search directions ˆp j = γ5p j for subsequent iterations. Also, eigenvalues will be real or come
in pairs of conjugate values, and left eigenvectors are computable from right ones, as long as we

6
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Figure 1: Deflated BiCGStab using eigenvectors computed with eigBiCGfor n1 right-hand sides for differ-
ent choices ofnev andm. No restarting was needed (De f Tol = 0 was used).
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Figure 2: Removing critical slowing down using eigBiCG and eigCG applied to the normal equations.

keep eigenvectors corresponding to conjugate pairs. Using these relations, we can simplify the
first phase ofIncremental eigBiCG where eigenvalues are computed. For illustration, we show
preliminary results comparing the two versions of the algorithm in Figure 3. Theresult shows a
similar performance In which only the right eigenvectors need to be stored and where matrix-vector
multiplication withA† is avoided.

5. Conclusions

Extending the ideas behind the successful eigCG algorithm to non-Hermitian systems gave
very promising results. The new algorithm gave access to the left and righteigenvectors of the
Dirac matrix while solving the linear systems using only a limited storage. It was alsoshown to
remove the critical slowing down and to be competitive with eigCG. Forγ5-Hermitian systems,
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Figure 3: Comparison of deflation withγ5-Hermitian algorithm.

preliminary study shows that storage of the left eigenvectors and multiplicationwith A† could be
avoided.
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