PROCEEDINGS

OF SCIENCE

Development of Lattice QCD Tool Kit on Cell
Broadband Engine Processor

Shinji Motoki*

Graduate School of Bio-Sphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima,
739-8521, Japan

E-mail: motoki-shinji@hiroshima-u.ac. jp

Yoshiyuki Nakagawa

Research Institute for Information Science and Education, Hiroshima University,
Higashi-Hiroshima, Hiroshima, 739-8521, Japan

E-mail: nkgw@rcnp.osaka-u.ac. jp

Keitaro Nagata

Research Institute for Information Science and Education, Hiroshima University,
Higashi-Hiroshima, Hiroshima, 739-8521, Japan

E-mail: nagata@rcnp.osaka-u.ac. jp

Koichi Hashimoto
Fixstars Corporation, Nisshin Bldg. 3F, 1-8-27, Kounan, Minato-ku, Tokyo 108-0075, Japan

E-mail: hashimoto@fixstars.com

Kiyoshi Mizumaru
Fixstars Corporation, Nisshin Bldg. 3F, 1-8-27, Kounan, Minato-ku, Tokyo 108-0075, Japan
E-mail: maru@fixstars.com

Atsushi Nakamura

Research Institute for Information Science and Education, Hiroshima University,
Higashi-Hiroshima, Hiroshima, 739-8521, Japan

E-mail: nakamura@Rriise.hiroshima-u.ac. jp

We report an implementation of a code for SU(3) matrix multiplication on Cell/B.E., which is a
part of our project, Lattice Tool Kit on Cell/B.E.. On QS20, the speed of the matrix multiplication
on SPE in single precision is 227GFLOPS and it becomes 20GFLOPS together with data transfer
from main memory by DNA transfer, which is 4.6% of the hardware peak speed (460GFLOPS),
and is 7.4% of the theoretical peak speed of this calculation (268.77GFLOPS). We briefly describe

our tuning procedure.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:motoki-shinji@hiroshima-u.ac.jp
mailto:nkgw@rcnp.osaka-u.ac.jp
mailto:nagata@rcnp.osaka-u.ac.jp
mailto:hashimoto@fixstars.com
mailto:maru@fixstars.com
mailto:nakamura@riise.hiroshima-u.ac.jp

Lattice QCD on Cell/B.E. Shinji Motoki

1. Introduction

This paper has three objectives;

1. We report a development of a SU(3) matrix multiplication code on the Cell/B.E.. This cal-
culation is, needless to say, an essential numerical part of any quench QCD calculation, and
we expect that Cell/B.E. can be a good cost effective environment for a quench QCD study
such as the confinement, transport coefficients etc..

2. We report several techniques to improve our Cell program performance, which we found
during developing our code. They are general and can be used to develop other scientific
high-performance code.

3. The experience reported here is a starting point to develop a whole QCD simulation system
on Cell/B.E., including the quark fermion matrix solver, which is now the most time con-
suming part of lattice QCD. Even a single Cell machine makes it possible for a researcher or
a small research group to calculate quark dynamics. And large scale Cell machine may work
as a most powerful QCD machine[4]

Lattice QCD society has been always looking for a powerful computer for more than thirty
years to realize their dream, i.e., to simulate QCD on a computer, to produce reliable data, and
to understand non-perturbative nature of QCD including the confinement, hadron interactions, and
quank-gluon plasma. Machines for this aim were VAX11, vector machines, parallel computers,
clusters, GRID and so on.

The Cell/B.E. has attracted much interest in scientific and engineering fields as a high perfor-
mance machine [1, 2, 3, 4]. It has very high potential power, and is a much more reliable scientific
computing system comparing current GP/GPU.

In order to extract its potential power, programing on Cell/B.E. demands several cares, which
were not required on the traditional computers.This is because Cell/B.E. is a machine of new ar-
chitecture and has the following features:

Multi-core computer: A Cell/B.E. consists of eight operation system processor cores called Syn-
ergistic Processor Element(SPE) and one system controll processor core called PowerPC
Processor Element (PPE).

SIMD operation: The SPE is specialized to calculations in the use and has the new architecture
with the ability of the SIMD operation.

Small local memory LS: SPE has a local store (LS) of 256 KBytes which worked as an inside
memory of SPE.

EIB connection and DMA: PPE and all SPE are connected by a high-speed bus called Element
Interconnect Bus (EIB). The EIB is also connected to main memory and to an input and
output device. Each processor core performs data access via the EIB.

SPE uses Direct Memory Access (DMA) transfer for data transmission. The DMA is used to
forward data directly between memory and memory (or, memory and input/ output device).

Lattice QCD on Cell/B.E. Shinji Motoki

Although the EIB connection provides fast transfer of the data, the transfer time should be
hidden to get satisfactory performance.

Large number of registers: Each SPE has 128 general registers. It is important to use this advan-
tage to write an efficient code.

In this report, we consider SU(3) matrix multiplication,) = a() x b() for i = 0,N — 1. We
show a result for N = 573,440.

The hardware peak speed of QS20, which has 2PPE and 16SPE, is 460GFlops, while theoret-
ical peak speed of this calculation on Cell/B.E. is 268.769518291 GFLOPS.

2. Tuning Procedure

2.1 Optimized Data Handling

In order to extract SPE’s calculational power, the full use of its Single Instruction Multiple
Data(SIMD) function is essential. We must provide our input matrix data in a form which fits the
SIMD operation. The SPE can handle several data at once by one instruction with vector data type.
The data treated in the Cell/B.E. are 16 bytes fixation, and it can handle four data at once by a
single instruction in the single precision floating point arithmetic.

When executing the DMA data transformation between the LS and main memory, a 128 byte
aligned data structure is most efficient. The maximum amount of data at one transfer is 16 KByte,
and it is desirable for data to fit this restriction.

We pack the matrices, a and b, of 16KByte in a structure. In order to fit the algorithm done on
SPE, we separate the real and imaginary parts of a complex matrix, and pack 112 matrices.

// DMA Send Data Struct (l6kbyte Packed)
typedef struct _s_gprodO_send_t

{
float ar[3][3]1[112];
float ai[3]1[3]1[112];
float br[3]1[31[112];
float bi[3][3]1[112];
unsigned char pading[256];

} s_gprodO_send_t;
2.2 Effect of SIMDizaiton

The SIMD operation is the operation technique that can process plural data by one instruction.[7]
When we use only PPE, the above calculation takes 365.080039 (msec), while it is 40.55844(msec)
when we use SIMD (1SPE). Furthermore, when we employ 16SPE it takes 10.13458 (msec).

2.3 Multi Buffering

In the parallel calculation, data transmission often becomes the bottleneck, except trivially
parallel applications.[5, 6] Therefore we must conceal the time for DMA transfer between the

main memory and LS !.

I'The calculation described here does not require the data transfer among SPE’s.

Lattice QCD on Cell/B.E. Shinji Motoki

For this purpose, we adopt a technique called double- or multi- buffering. First let us consider
a double buffering case for transforming the matrices a and b from the main memory to each LS of
sixteen SPE’s. We prepares two sets of buffers:

e We start to transfer the input data in the first buffer by DMA to SPE’s LS.

e When the data arrive, the SPE executes the matrix multiplication.

e Without interruption, Memory Flow Controller(MFC) continues to send the next data in the
second buffer. This transfer time overlaps with the matrix-multiplication calculation time.
Thus part of the transfer time is "hidden".

o MFC continues to send the next data in the first buffer.

Main Memory Main Memory 8 @ — — — — — — — - - - - - - — — - — — — I
(input data0 in Buffer0) ©utput dataoin Butrerd) | | [Geto Put0 [Geto Put0IGet0 |
|
DMA DMA | |
(nput data0 in BufferO’) 6utput data0 in Buf‘ferO) | Compute0 ComPUteO E E ComPUteO:
LS sy | Wait Wait |
Put0 I . .
Get0 u | (a) Single Buffering I
R " r———-- - - - - - - - - - - - - - = a
Main Memory Main Memory
Put1
(Input data1l in Buffer1) (Output datat in Buffer1)
Get0 Get0 Get0 I

DMA

DMA

(input data1 in Buffert)

(Output datat in Buffer)

LS

LS

Get1

Put1

Compute0 Compute 1 Compute0 Compute 1 ComputeO|
(b) Double Buffering

Figure 1: Single and Double Buffering

In Fig.1, we show a schematical diagram of (a)Single and (b)Double Buffering. When we use

Single Buffering (16SPEs), it takes 10.1385 (msec), while it takes 9.1241 (msec) when we employ
Double Buffering(16SPEs). SIMD improves the efficiency three to four times. On the other hand,
the effect of the double buffering is around 10%.

2.4 Loop Unrolling and Software Pipelining

The SPE has 128 general registers of 128 bit. Thanks to the many registers, loop unrolling
results in a high-performance code (see Fig. 2). In addition, the SPE has the pipeline of two
asymmetries, and two instructions can be executed at once. The speedup can be achieved by
considering it.

Present compilers are not strong enough to find the most optimal level of the loop unrolling
for a CPU of such many registers. Thus, we must optimize a code by hand. We develop a loop by

Lattice QCD on Cell/B.E. Shinji Motoki

ks s Even Pipsiine
B 30 ToTimasT $41 53355

OocPieine

TS 30450,

1930542 4000855
suqusas 144(se7)

s | Even Pipeline] T

I T wxlxx x[x

134 aisis51516 3 i
195 msa7 S48 55 xx
19832052016 x[x]
a0 asatsti x[x[3
0k TESTETE ENEE
1206 a8 $46 55547
207 i8173517,16
1208 a5 45 $T3 57

(0855 544 51258 x NN o

i3 95imasi $9 45 53
3¢ 157 1mas26 $39 545,52
T35 158 1masie 59879522
56 2011mast2539 575,523

Tl

20300127
205mass ST

3510
38109570,176(856)

211 e saas1050 | 3

[2iZnoptar X[s

5700
2585100531 0(558)
255mas3s $70571 538 256100

Figure 2: Dual-Pipeline optimization overview. (left is Normal calculations, and right is dual-issue optimizaions)

45 M SPE SIMD Sbuf

40 - B SPE SIMD SBuf Loop Unrolling

35 - = SPE SIMD Dbuf
'g 30 - M SPE SIMD Dbuf Loop Unrolling
E 75 -
£
E 20 -
2 15 -

10 A

O I I 1 1 1
1 2 4 8 16
The Number of SPEs

Figure 3: Result of Loop Unrolling Calculations

manual operation, and it widens the cord range where a compiler can optimize to use many regis-
ters. In addition, the dependency due to the register competition decreases, and one can conceal a
stall.

Furthermore the total road/store number in the loop decreases, and can conceal the access
latency to LS. These are important advantages. We should avoid the resister competition. For this
purpose we must keep it in mind that the load from LS to register needs six cycles. It makes a high
performance code to use no variable which is just used, or to rearrange the order of operations.

We show a calculation result of Loop Unrolling in Fig. 3. When we use 16 SPEs (SIMD
and Double Buffering), it takes 8.8119 (msec) , This is equivalent to 13 GFlops. Therefore,

Lattice QCD on Cell/B.E. Shinji Motoki

we achieve about 41 times speedup in comparison with the speed in the PPE simple substance
(365.080039msec, 0.31GFlops) by tuning of the calculation technique in the SPE.

3. Discussions

In this report, we briefly described our trials to run the SU(3) matrix multiplication code on
Cell/B.E. at high performance. Combining several tuning techniques, we get over 20 GFLOPS(results
of the latest our work), which is about one tenth of the theoretical peak speed.

This is probably much better than expected in the community. But we think more improvement
is possible. There are several points worth to be considered:

1. Double buffering does not hide completely the transfer time. Multi (more than four) -
buffering seems to be necessary.

2. We waited the completion of the calculation,) = ql) x b(i), and transfer back the result,
¢l to the main memory. This part has a room to be improved.

3. There may be more efficient data structure for a,b and c for the best use of SIMD.

In this experiment, we execute the calculation only once, and therefore we create a thread
once. In real calculations, we must create threads many times, and it takes time to create a thread.
Therefore, it is desirable to recycle the thread many times and to generate a thread once.

4. Acknowledgement

This work is supported by Grant-in-Aide for Scientific Research by Monbu-Kagaku-sho, Japan
(20340055).

References

[1] F. Belletti et al., PoS (LATTICE 2007) 039.
[2] S. Motoki and A. Nakamura PoS (LATTICE2007) 040.

[3] G. Shi, V. Kindratenko and S. Gottlieb, PoS(LATTICE 2008) 026:
Int. J. Parallel Prog. 37, 2009, pp488-507.

[4] H. Baier et al., PoS (LAT2009) 001.

[5] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands and K. Yelick, Scientific Computing Kernels on
the Cell Processor, International Journal of Parallel Programming, Vol.35, No.3, pp.263-298(2007).

[6] T.Kihara, H. Tadano, T. Sakurai, Implementation and performance evaluation of sparse matrix vector
multiplication for mixed precision Krylov method on the Cell BE, IPSJ Transactions on Advanced
Computing Systems, Vol. 1, pp. 51-60 (2008) (in Japanese).

[7] Khaled Z. Ibrahim, Francois Bodin, SIMDization and data management of the Lattice QCD
computation on the Cell Broadband Engine, Scientific Programming, Vol.17, pp.153-172(2009).

