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1. Introduction

One of the hardest problems in Lattice QCD is the calculation of disconnected quark loops
and all-to-all quark propagators [1]. Statistical noise methods can, in principle, make any matrix
element available, but the computer expense can be prohibitive. This is especially true at low quark
mass, where error bars are greatest. Noise subtraction methods, such as the perturbative subtrac-
tion method [2], which improve the signal by a suppression of off-diagonal noise, are essential
for efficiency. However, perturbative subtraction is ineffective at low quark mass. We propose a
subtraction method, which we call "eigenspectrum subtraction", which uses low eigenmode infor-
mation to suppress the statistical noise at low quark mass. Such eigenmode information is readily
available from fermion deflation algorithms, such as GMRES-DR [3] for non-hermitian systems or
LAN-DR [4] for hermitian ones.

2. Method

2.1 Introduction

Our noise methods will be utilizing real Z(2) noise. These are vectors made up of statistically
random 1’s and −1’s. A useful property of these Z(2) noise vectors is

δi j = lim
N→∞

1
N

N

∑
n

z(n)
2i

z(n)
2 j
≡
〈
z2iz2 j

〉
(2.1)

The quark propagator problem can be formed by solving for the solution vector of a linear
system made with the necessary action, M, and any given source vector, b.

Mx = b

⇒ x = M−1b
(2.2)

For our noise algorithms we will be using many Z(2) noises as our source vectors so we get

x(n)
i = ∑

j
M−1

i j z(n)
2 j

(2.3)

This formulation is done with a Wilson action of the form

M = 1−κD (2.4)

For the disconnected quark loops and all-to-all quark propagators we will, as a test, form
Tr(M−1), although the method can be used for any quark matrix element.

2.2 Non-Subtraction

First let us consider the the basic setup. By utilizing the aforementioned properties we can
compute the trace of the inverse of a matrix.
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Tr(M−1) = ∑
j

M−1
j j

= ∑
i, j

M−1
i j δi j

= ∑
i, j

M−1
i j

〈
z2iz2 j

〉
= ∑

i, j
lim

N→∞

1
N

N

∑
n

z(n)
2i

M−1
i j z(n)

2 j

= ∑
i

lim
N→∞

1
N

N

∑
n

z(n)
2i

x(n)
i

(2.5)

This method allows for the trace computation to be done by solving many linear systems.
The error from this method is introduced by the off-diagonal elements, that is; the less diagonally
dominant the matrix is, the greater the error that is introduced. In order to minimize this effect we
must form a matrix that approximates the off-diagonal elements of M−1. We will call such a matrix
M̃−1. We will use this matrix to subtract out the off-diagonal elements.

2.3 Perturbative Subtraction

A useful method is to use the perturbative approach to form the approximation matrix[2]. That
is to form

M̃−1
pert ≡ 1+κD+(κD)2 +(κD)3 +(κD)4 (2.6)

Since M is in a form that is conducive to small parameter expansions we can subtract off the
necessary, approximate, off-diagonal elements. Since M̃−1

pert is only an approximation it does have
on-diagonal elements and thus the trace of M̃−1

pert must be added back.

Tr(M−1) = lim
N→∞

1
N

N

∑
n

z(n)
2i ∑

j
(M−1

i j − M̃−1
pert)z

(n)
2 j

+Tr
(
M̃−1

pert
)

(2.7)

This method produces significant improvements to the “Non-Subtraction” method, but with a
catch. Since M̃−1

pert is a small parameter expansion, it is most effective for small values of k, which
relate to “large” quark mass values.

2.4 Eigenspectrum Subtraction

In order to allow for small values of the hopping parameter we must formulate a new ap-
proximation matrix. Our new method allows for an eigenspectrum formulation by utilizing the
eigenvectors, both left and right, from the non-hermitian Wilson matrix, M.

Right eigenvectors are formed as

Me(q)
R = λ

(q)e(q)
R (2.8)

where left eigenvectors are formed like so
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e(q)T

L M = e(q)T

L λ
(q) (2.9)

It is useful to note that the eigenvalues of the left and right eigen-system problem are the same.
That is to say for every right eigenvector, there exists a left eigenvector. Left and right eigenvectors
are orthogonal. (For the Wilson case, the two are simply related by γ5.) Thus any matrix, m×m
can be formed via an eienspectrum formulation by

M =
m

∑
q=1

e(q)
R λ

(q)e(q)T

L (2.10)

By using the orthogonality of this form and only using the Q smallest eigenvalues we form our
approximation.

M̃−1
eig ≡

Q

∑
q

1
λ (q) e(q)

R e(q)T

L

where e(q)
R · e

(q′)
L = δqq′

(2.11)

The smallest eigenvalues of M are used as we expect their contributions will be the greatest. By
utilizing this eigenspectrum formulation, we are better able to represent the off-diagonal elements
for small quark masses. Since at small quark masses the eigenvalue spectrum shows many small
eigenvalues, we expect that we will get increasingly better results in a the range of κcrit .

As before we can form the trace as

Tr
(
M−1)= lim

N→∞

1
N

N

∑
n

z(n)
2i ∑

j
(M−1

i j − M̃−1
eig )z(n)

2 j
+Tr

(
M̃−1

eig

)
(2.12)

Unlike the Perturbative method, however, the Tr
(

M̃−1
eig

)
can be formed with extreme ease.

Tr
(

M̃−1
eig

)
= ∑

q

1
λ (q) (2.13)

The ease of this method does not end here. Since no part of M̃eig is ever actually formed,
but rather the right/left eigenvectors are, the number of matrix/vector multiplications is drastically
minimized when compared to the Perturbative Expansion Method.

3. Perturbative Subtraction and Eigenspectrum Subtraction

In an attempt to combine both method in hopes to yield a “hybrid” method we developed
something new. To näively apply both methods at once would form an approximation matrix of the
form

M̃−1
naive = M̃−1

pert + M̃−1
eig . (3.1)

The issue with this naive formulation is the the approximate off-diagonal information would
be removed twice over, introducing error. In order to correct for this issue we need to remove the
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low eigenspectrum information from M̃−1
pert and replace it with the low eigenspectrum information

of M−1. This new formulation would provide a perturbative approximation, but where the low
eigenmode information of the approximate perturbative matrix is replaced with the low eigenmode
information of M. This should allow us to approximate for both large and small values of κ . To
subtract the low eigenmode information from M̃−1

pert we form it as

M̃−1
pert−eig ≡ M̃−1

pert −
Q

∑
q

1
η(q) e(q)

R e(q)T

L

where
1

η(q) = e(q)
L M̃−1

perte
(q)
R

(3.2)

η is an eigenvalue-like term that approximates the eigenvalues of M̃−1
pert . With this formulation

our new trace comes to

Tr(M−1) = lim
N→∞

1
N

N

∑
n

z(n)
2i ∑

j
(M−1

i j − M̃−1
pert−eig− M̃−1

eig )z(n)
2 j

+Tr
(

M̃−1
eig

)
+Tr

(
M̃−1

pert−eig

)
= lim

N→∞

1
N

N

∑
n

z(n)
2i ∑

j
(M−1

i j − M̃−1
pert−eig− M̃−1

eig )z(n)
2 j

+
Q

∑
q

1
λ (q) +Tr

(
M̃−1

pert
)
−

Q

∑
q

1
η(q)

(3.3)

4. Larger Problems

The Wilson action can be formed as

M = I−κ

(
0 Hoe

Heo 0

)
(4.1)

allowing for the linear system to be solved as(
I−κ

(
0 Hoe

Heo 0

))(
xo

xe

)
=

(
bo

be

)
(4.2)

Due to the form of the matrix, a “reduced matrix” can be formed allowing for the problem to
be cut in half.

Mreduced =
1

κ2 −HeoHoe (4.3)

The reduced linear system then becomes

Mreducedxe =
1

κ2 be +
1
κ

Heobo (4.4)

and xo can then be directly computed by

xo = bo +κHoexe (4.5)

5



P
o
S
(
L
A
T
2
0
0
9
)
0
4
1

Eigenspectrum Noise Subtraction Methods in Lattice QCD Victor Guerrero

When programming for Lattice QCD, the reduced problem is more efficient. The Eigenspec-
trum Subtraction information can be extracted from the reduced system in the Wilson case. The
eigenspectrum of the reduced matrix will be formed in the usual way.

Mreducedx(q)
e = λ̂

(q)x(q)
e (4.6)

The eigenvalue of the reduced matrix (λ̂ ), can be related to the eigenvalue of the full matrix
(λ ).

λ = 1±
√

1−κ2λ̂ (4.7)

The eigenvectors, likewise, can be be related. xe, the eigenvector of the reduced matrix, is also
the even part of the eigenvector of the full matrix.

xe = xe

xo =± κ√
1−κ2λ̂

Hoexe
(4.8)

Since the reduced matrix can be used to form the eigenspectrum information of the full matrix,
which is readily available by linear solver algorithms with deflation, forming the full matrix is never
needed. This is untrue for the Perturbative Subtraction method. The low eigenspectrum information
is related to the “negative sign” of λ and xo.

5. Tests and Results

As a test, we applied the method to an 84 Wilson matrix, M, using a parallel version of MAT-
LAB. The κcrit = 0.15701 value was determined.

Since we are only interested in comparing size of the error bars from different methods, and
thus each methods effectiveness various values of κ , we zero out all the values themselves in the
figures and only show the error bars.

The trials consisted of runs where 100 real Z(2) noises were used for 20 different times, each
time with a different random seed, to define error bars. We show the results after 1, 10, 20,...,
100 noises, or iterations. In order that error bars do not overlap, the results are separated from
one another by a small value on the noise axis. (The non-subtracted results are located exactly at
positions 1,10, 20, 30,..., 100).

The notation is as follows.

NS Non-Subtracted
PE 4th Order Perturbative Subtraction
Q ev Eigenspectrum Subtraction with Q eigenvectors
PEc+Q ev Perturbative Subtraction corrected with Q eigenvectors and

Eigenspectrum Subtraction with Q eigenvectors
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(a) κcrit = 0.15701
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(b) κ = 0.1560
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(c) κ = 0.1550

Figure 1: Comparing different levels of Eigenspectrum Subtraction, Perturbative Subtraction with
Eigenspectrum Subtraction, Non-Subtracted, and 4th Order Perturbative Subtraction. ERROR
BARS ONLY 7
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Figure 2: Plot of the low eigenspectrum of the 84 Wilson lattice at κcr = 0.15701.

6. Conclusions

At a value of κ near κcrit our method shows evidence of improvement over the 4th order
Perturbative Subtraction Method. By combining the two methods, and removing the low eigen-
information from the Perturbative Subtraction Method, we see an additional increased improve-
ment, albeit small. As κ deviates from κcrit we see results on par with Perturbative Subtraction.

We would expect our method to become more efficient for larger matrices with smaller eigen-
values, but we need more study. The combined effects of Perturbative Subtraction and Eigen-
spectrum Subtraction are still being studied as well. Development in FORTRAN is in progress to
facilitate the larger matrices.
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