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1. Introduction

Regularization of supersymmetric field theory has increased its importance both for recent
theoretical and phenomenological developments, including, for instance, gauge/gravity duals such
as AdS/CFT and supersymmetry breaking. One may expect that lattice formulation, among others,
would provide a promising regularization scheme with the applicability to strong-coupling, thus
constructive and nonperturbative, analysis in the first principle calculation. It is, however, far from
straightforward to incorporate supersymmetry on the lattice due to the discrete nature of spacetime;
superalgebra, which prescribes supersymmetry, contains momentum operator, and momentum op-
erator should be the generator of infinitesimal spacetime translation, which is broken on the lattice.
For this difficulty, various approaches have been developed so far. (For a review see [1] and ref-
erences therein.) In this article, we present a possible formulation [2] of lattice supersymmetry
with a "deformed" notion of superalgebra in the framework of the link approach [3, 4]. This de-
formation can be naturally interpreted as a generalization of Lie algebra to Hopf algebra. What
we need to formulate is then a field theory with this Hopf algebraic supersymmetry. We show that
such a formulation would be given by applying a general formalism called braided quantum field
theory (BQFT) [5]. For this purpose, we introduce a simply generalized statistics of fields which
is compatible with the structure of our Hopf algebra. Supersymmetry on the lattice can now be
recognized as various sets of Ward–Takahashi identities derived by this BQFT formalism [6].

We will illustrate these aspects in the following, mainly concentrating on two-dimensional
non-gauge examples.

2. Superalgebra in the link approach

In the link approach [3], superalgebra on a two-dimensional lattice was introduced in the form

{Q,Qµ} = i∂+µ , {Q̃,Qµ} = −iεµν∂−ν , (2.1)

with the other commutators just vanishing. Notice that supercharges QA = Q, Qµ and Q̃ are ex-
pressed in the Dirac–Kähler twisted basis, which essentially corresponds to N = (2,2) super-
charges in two dimensions in the normal basis.1 We can see that fermions in the link approach
should be geometrically distributed on the lattice just like the Dirac–Kähler or staggered fermions,
where the d.o.f. of possible doublers on the lattice is essentially used as that of extended super-
symmetry through the Dirac–Kähler twisting. This is why the twisted basis was chosen in the
superalgebra above. Another point is that the algebra (2.1) contains the forward and backward
finite difference operators ∂±µ which simply replace the momentum operator in the continuum.
These difference operators don’t obey the Leibniz rule, but obey the modified Leibniz rule

∂±µ(ϕ1 ·ϕ2)(x) = ∂±µϕ1(x)ϕ2(x)+ϕ1(x±aµ̂)∂±µϕ2(x), (2.2)

where µ̂ denotes the unit vector along the µ direction. One might expect that, other less sim-
ple operators, instead of the simple forward/backward difference operators, could obey the usual
Leibniz rule even on the lattice. This is not possible, however, due to the no-go theorem proving

1With a similar argument, we need to take the Dirac–Kähler twisted N = 4 supersymmetry in four dimensions.
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non-existence of such a local operator [7], which implies the modified Leibniz rule is unavoid-
able on the lattice when one concentrate on local field theories. In other words, it implies that the
supercharges can’t obey the normal Leibniz rule either to make the algebra (2.1) hold.

In the link approach, the following modified Leibniz rule for QA was assumed

QA(ϕ1 ·ϕ2)(x) = QAϕ1(x)ϕ2(x)+(−1)|ϕ1|ϕ1(x+aA)QAϕ2(x), (2.3)

where |ϕ| is 0 (or 1) when ϕ is bosonic (or fermionic, respectively). This already shows that the
algebra (2.1) doesn’t form a Lie superalgebra in the usual sense, and “deforms” the notion of usual
superalgebra. Then a natural question is whether we could treat the algebra (2.1) with the modified
Leibniz rules (2.2) and (2.3) in a mathematically rigorous manner. We will see shortly that the
answer is affirmative; the algebra in the link approach can be identified as a Hopf algebra, which
assures mathematical consistency especially for the modified Leibniz rule (2.3). Another question
would immediately follows: even if the algebra itself makes sense, it is still unclear whether it
corresponds to a symmetry of a local quantum field theory as usual Lie algebra does. For this,
too, we will propose an affirmative answer. First, we can manage to take care of the locality
with a mildly generalized statistics of fields. This statistics is in fact expressed mathematically as
(trivial) braiding. Since quantum field theory for fields with such a braiding structure is known to
be formulated generally as BQFT [5], we could apply it to our case. This approach now allows
us to associate our Hopf algebraic symmetry with various sets of Ward–Takahashi identities [6],
showing clear relations of the Hopf algebra to a symmetry of a quantum field theory.

3. Superalgebra on the lattice as a Hopf algebra

Here we are going to show how the superalgebra which was originally introduced with an extra
shift structure in the link approach [3] can as a whole be rigorously identified as a Hopf algebra
[2]. Before going into the detail, let us briefly summarize the Hopf algebra axioms. For a full
mathematical treatment on Hopf algebra, see, for example, [8].

Hopf algebra H is an object which satisfies the following four axioms.

1. H is an algebra, namely a vector space which has an associative product (multiplication)
· : H ⊗H → H, where the associativity reads · ◦ (·⊗ id) = · ◦ (id⊗·), and unit element 1l.2

2. H is a coalgebra, namely a vector space which has a coassociative coproduct (comultiplica-
tion) ∆ : H → H ⊗H, where the coassociativity reads

(∆⊗ id)◦∆ = (id⊗∆)◦∆, (3.1)

and counit ε : H → C which satisfies the condition

(ε ⊗ id)◦∆ = (id⊗ε)◦∆ = id . (3.2)

3. The coproduct and counit are both algebra maps, namely,{
∆◦ · = (·⊗ ·)◦∆,

∆(1l) = 1l ⊗1l,
and

{
ε ◦ · = ε ⊗ ε ,

ε(1l) = 1.
(3.3)

2Here id is the identity map and ◦ denotes composition of maps.
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4. H has an antipode S : H → H, which satisfies the defining condition

· ◦ (S⊗ id)◦∆ = · ◦ (id⊗S)◦∆ = 1lε. (3.4)

It is easy to see that the superalgebra (2.1) in the link approach forms an algebra. Product
of two generators, say, QA and QB, is defined with a successive applications of QB and QA as in
(QA ·QB)Bϕ := (QA B) ◦ (QB B)ϕ,3 whereas the unit operator is trivially defined as 1l Bϕ = ϕ .
These structures together with the “equivalence” relations, (anti-)commutation relations (2.1), form
a universal enveloping algebra of a sort. To be specific, let us list explicit field representations for
this algebra, taking the example of N = (2,2) Wess–Zumino model in two dimensions. The field
contents are scalar bosons φ , σ , fermions ψ, ψµ , ψ̃ and auxiliary fields φ̃ , σ̃ , for which the
supertransformations are as follows:

Qφ = 0, Qµφ = ψµ , Q̃φ = 0,

Qψν = i∂+νφ , Qµψν = −εµν φ̃ , Q̃ψν = −iενµ∂−µφ ,

Qφ̃ = −iεµν∂+µψν , Qµ φ̃ = 0, Q̃φ̃ = i∂−µψµ ,

Qσ = −ψ, Qµσ = 0, Q̃σ = −ψ̃,

Qψ = 0, Qµψ = −i∂+µσ , Q̃ψ = −σ̃ ,

Qψ̃ = σ̃ , Qµ ψ̃ = iεµν∂−νσ , Q̃ψ̃ = 0,

Qσ̃ = 0, Qµ σ̃ = iεµν∂−νψ + i∂+µ ψ̃, Q̃σ̃ = 0.

(3.5)

What is more important is the coproduct structure. It amounts to specifying the action of an
operator, say QA, on a product of fields ϕ1 ·ϕ2 =: m(ϕ1 ⊗ϕ2) as in

QA B(ϕ1 ·ϕ2) = m
(

∆(QA)B(ϕ1 ⊗ϕ2)
)
. (3.6)

Thus determining the coproduct structure is nothing but to specifying the Leibniz rule. For instance,
the modified Leibniz rule (2.3) is essentially equivalent to the coproduct formula

∆(QA) = QA ⊗1l +(−1)F ·TaA ⊗QA, (3.7)

where (−1)F just gives factor +1 (or −1) when applied on a bosonic (or fermionic, resp.) field:
(−1)F Bϕ = ±ϕ , and TaA is the shift operator:

(
TaA Bϕ

)
(x) := ϕ(x + aA). Note in passing that

these operators would satisfy the trivial (anti-)commutation relations

[QA,Tb] = [Pµ ,Tb] = [Tb,Tc] = 0, {QA,(−1)F} = [PA,(−1)F ] = [Tb,(−1)F ] = 0. (3.8)

We can determine the coproduct for ∂±µ , Tb and (−1)F by the identifications similar to (3.6),
which result in the following formulae:

∆(∂±µ) = ∂±µ ⊗1l +T±aµ̂ ⊗∂±µ , ∆(Tb) = Tb⊗Tb, ∆((−1)F ) = (−1)F ⊗ (−1)F . (3.9)

We can confirm ourselves, by straightforward calculations, that these prescriptions indeed obey the
coassociativity condition (3.1). Notice that the coassociativity condition assures the uniqueness of

3The “action” of a generator a on a field ϕ is denoted as aBϕ .
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the action of an operator on a product of three or more fields. For instance, since by the associativ-
ity ϕ1 ·ϕ2 ·ϕ3 =

(
ϕ1 ·ϕ2

)
·ϕ3 = ϕ1 ·

(
ϕ2 ·ϕ3

)
, we need QA B

(
ϕ1 ·ϕ2 ·ϕ3

)
= QA B

((
ϕ1 ·ϕ2

)
·ϕ3

)
=

QA B
(

ϕ1 ·
(
ϕ2 ·ϕ3

))
. This is equivalent to (∆⊗ id)◦∆(QA) = (id⊗∆)◦∆(QA), which is the coas-

sociativity condition for the operator QA. Similar arguments of course hold for other operators.
The coproduct structure thus determines how operators act on products of fields. Note, how-

ever, that any field ϕ can be considered as a product ϕ = 1 · ϕ = ϕ · 1 with the constant field
1. Accordingly, when the operator, say, QA acts on ϕ , it must satisfy the consistency condition
QA Bϕ = QA B

(
1 ·ϕ) = QA B

(
ϕ ·1). In order to state this more generally, let us define the counit

map by
QA B1 ≡ ε(QA)1, (3.10)

so that the counit gives the trivial representation. The consistency above is now written as id =
(ε ⊗ id) ◦∆ = (id⊗ε) ◦∆, which is what we listed before (3.2). The explicit formulae (3.7) and
(3.9) now allow us to specify the counit of operators which satisfies this condition as follows:

ε(QA) = 0, ε(Pµ) = 0, ε(Tb) = 1, ε
(
(−1)F

)
= 1. (3.11)

Coproduct and counit for a product of operators can be calculated through the algebra-map
conditions (3.3). We emphasize that this property is important since it also assures the explicit
formulae (3.7), (3.9) and (3.11) are indeed compatible with the algebraic relations (2.1).

We introduce one more object, the antipode. It essentially gives the “inverse” of operators,
uniquely determined by the relation (3.4). From the explicit formulae (3.7), (3.9) and (3.11), we
find the following formulae

S(QA) = −(−1)F ·QA, S(Pµ) = −Pµ , S(Tb) = T−1
b , S

(
(−1)F

)
= (−1)F . (3.12)

We can show by the condition (3.4) that the antipode is anti-algebraic, namely, S◦· = · ◦ τ ◦(S⊗S)
and S(1l) = 1l, where τ is the transposition τ(a⊗ b) := b⊗ a. This is again consistent with the
relation (2.1), as seen with the explicit formulae (3.7), (3.9) and (3.11). We can also derive that the
antipode should satisfy anti-coalgebraic nature as in (S⊗S)◦∆ = τ ◦∆◦S and ε ◦S = ε, which are
also found to be compatible to the explicit formulae.

4. Statistics on the lattice as a braiding

Our next task is to consider field-product representations of the Hopf algebraic supersymmetry.
We first emphasize here that a Hopf algebra in general has a noncommutative representation. In the
current application, a noncommutative representation would naturally lead to a noncommutative
field theory, which would then be nonlocal. In fact, we could avoid this noncommutativity or
nonlocality, systematically taking product representations which are almost commutative, or, in
other words, commutative up to a mildly generalized statistics.4

We illustrate more concretely how this is possible with the previous example of N = (2,2)
Wess–Zumino model in two dimensions. For scalars φ , σ , supertransformations with respect to

4Our Hopf algebra has a simple structure, (quasi)triangularity, which allows such an almost commutative represen-
tation.
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Qµ are given as Qµφ = ψµ , Qµσ = 0 (see (3.5)). Let us assume that the scalars be commutative:
φ(x) ·σ(x) = σ(x) · φ(x). The point is, once we set this assumption, we could deduce from the
supertransformations (3.5) the statistics for the other fields in a manner totally consistent with
the Hopf algebra structures. To see this, we calculate Qµ

(
φ(x) · σ(x)

)
= Qµ

(
σ(x) · φ(x)

)
, so

that, with the use of the coproduct formula (3.7), we have ψµ(x) ·σ(x) = σ(x + aµ) ·ψµ(x). This
shows that the fermion ψµ is commutative with the boson σ up to the shift of argument. Similar
calculations lead to that ψµ is (anti-)commutative with any other fields up to the same amount of
shift of argument. We can in fact generalize this statement as follows

Ψ
(

ϕA0···Ap(x)⊗ϕ ′
B0···Bq

(y)
)

= (−1)pqϕ ′
B0···Bq

(
y+

p

∑
i=1

aAi

)
⊗ϕA0···Ap

(
x−

q

∑
i=1

aBi

)
, (4.1)

where Ψ represents the exchange of the order of fields in a tensor product, called (trivial) braid,
and ϕA0···Ap := QAp · · ·QA1ϕA0 , with ϕA0 denoting scalars φ or σ .

With the mildly generalized statistics (4.1), the ordering ambiguity claimed in [9] no longer ap-
pears.5 Notice also that we might understand this statistics property in terms of a grading structure
for each field and symmetry operator which is determined corresponding to the indices Ai and Bi

in the formula (4.1). Then in particular the difference operators ∂±µ as well must have the grading
structure, which is difficult to express explicitly. We will come to this point in the conclusion.

5. Supersymmetric lattice field theory as BQFT

Quantum field theory for fields with generalized statistics, or braiding, can be generally for-
mulated as braided quantum field theory (BQFT) at least perturbatively [5]. We can thus apply the
formalism into our approach to construct a perturbative lattice field theory. Here we just sketch the
outline of the formulation. The theory is quantized through path integral formalism

Z =
∫

e−S, 〈ϕ1 · · ·ϕn〉 =
1
Z

∫
ϕ1 · · ·ϕne−S,

∫ δ
δϕ(x)

= 0, (5.1)

for a classical action S. The last equation formally defines the path integral, for which the functional
derivative is assumed to obey the deformed Leibniz rule

δ
δϕ(x)

(ϕ1 ·ϕ2) =
δ

δϕ(x)
ϕ1 ·ϕ2 +(−1)|ϕ||ϕ1|T−1

ϕ ϕ1 ·
δ

δϕ(x)
ϕ2. (5.2)

The formal expression is enough to derive perturbative Wick’s theorem with appropriate statistics,
which allows to compute arbitrary correlation functions in terms of propagators determined by the
specific form of the classical action. Now the classical Hopf algebraic supersymmetry is expressed
by QA BS = 0. At the quantum level, this leads to various sets of Ward–Takahashi identities of the
form [6]

QA B〈ϕ1 · · ·ϕn〉 = ε(QA)〈ϕ1 · · ·ϕn〉 = 0. (5.3)

5Another difficulty raised there in the case of gauge theory needs further investigations.
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6. Conclusion

In this article, we presented a formulation of lattice supersymmetry with the machinery of
Hopf algebra and BQFT, based on the previously proposed formulation, the link approach. We
showed explicitly that superalgebra on a lattice can be identified as a Hopf algebra, where the mod-
ified or deformed Leibniz rules invented in the original link approach are now incorporated as the
coproduct structure in the Hopf algebra. Fields, as representations of the Hopf algebraic symmetry,
would in general be noncommutative, thus the corresponding field theory would be nonlocal. This
noncommutativity, however, could be reduced to the commutativity up to a lattice-deformed statis-
tics in a manner consistent with the Hopf algebraic superalgebra. The difficulty claimed as ordering
ambiguity against the original link approach is now solved thanks to this deformed statistics. We
then applied the formalism of BQFT to construct a quantum field theory for such a generalized
statistics, which allows us to derive Ward–Takahashi identities associated with the Hopf algebraic
supersymmetry at least perturbatively.

In this formulation, fields and symmetry generators could be interpreted to have grading struc-
tures corresponding to the deformed statistics of fields. In particular, “momentum” operator, the
difference operators on the lattice, should have nontrivial grading. In order to compute arbitrary
correlation functions, especially when including loop corrections, we need an explicit representa-
tion of the graded difference operators. Such a representation might be unnecessary for the com-
putations of physical observables. Another issue is that this construction at the moment is limited
only on a formal and perturbative level, and it is not yet clear whether it can lead to nonperturbative
formulation as a lattice field theory. Gauge theory extension is missing as well. These issues are
for the future works.
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