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1. Introduction

Gauge theories defined in a spacetime with compact extrangiones offer a very interest-
ing platform for model building and phenomenology in phgdieyond the Standard Model [1].
However, at the same time the non-renormalizable natureaofe theories i > 4 makes it
notoriously difficult to extract any non-perturbative infoation from these theories. In fact, the
extra-dimensional gauge theory is to be understood onlyl@s-gnergy effective description of a
more fundamental theory, and therefore as a theory defintdavfmomentum) cutoff\ indicating
the scale where the effective description breaks down amdeiails of the underlying theory be-
come significant. For a given compactification sda®f the extra dimension, this effective theory
description makes sense only if there is at least a moddstsgaaration between the inverse cutoff
A~ and the compactification lengthgA > 1.

In these proceedings we report on our recent study [2], ithvvie investigate the low-energy
sector of the effective theory by trading the physical duimf a lattice regularization. In the cases
where the details of the cutoff do not play a significant reés allows us to obtain robust non-
perturbative predictions from numerical simulations.

2. Basic setup of the model

As a prototype for an extra-dimensional gauge model, weys8id(2) Yang-Mills theory in
5d Euclidean spacetime, where one of the dimensions is takes periodic with a finite exterhts
and the gauge fields are taken to obey periodic boundary timmslialong the compact direction.
The model is formally defined by the path integral
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with the indicesM, N running from 1 to 5. As this model is non-renormalizable, ¢tbatinuum
action in Eq. (2.1) defines it only up to a regularization wathassociated cutoff. Note that in 5d
the (bare) couplinggg has the dimension of a length, and the model can thus be ptaizedeby
two dimensionless ratios, namelyA andgg/\.

In order to study the model at non-zero coupling we reguatipn an anisotropic lattice with
a lattice spacin@ in the four usual directions, letting the lattice spacaagin the fifth direction
take an independent value, such that= asNs. We take as our lattice action the Wilson action

Bs [ 1 4 1 _ 4a
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In the weak coupling limit, the anisotropy factpreduces to the ratio of the lattice spacings
a
im —=vy. 2.3
am Y (2.3)

An attempt to take the cutoffs to zefa,as) — 0 leads to (power-like) divergences, which
cannot be absorbed in coefficients of an action with a finitmlmer of terms, and thus the cutoff
cannot be removed. Nevertheless, one can take the latéoingpinone of the directions to zero,
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Figurel: The phase diagram of the SU(2) gauge theory Eq. (2.2) iNghe oo limit. The solid curve, drawn

to guide the eye, goes through the origin with diverging\gsive as expected from the strong coupling
expansion and tends to an asymptotic valuBlas- . The confined phase is not analytically connected to
the weak-coupling regime # — oo and is a pure artifact of the lattice regularization.

as — 0, while keepingNs/y = Ns ~ Ls/a and the lattice spacing in the four usual directions
fixed, since this corresponds to studying quantum mechafias4d lattice with non-zero lattice
spacinga. In the following we adopt this strategy for two reasofiy:Taking the continuum limit
in the fifth direction reduces the set of dimensionless patara characterizing the model from
(Ns, v, Bs) to (N5,L35), such that the lattice model is parametrized by two dimersgs numbers
in correspondence with the continuum theofi§) At the same time, it reduces the cutoff effects
in systems where the ratio;/a is not very large. This turns out to be very important in picadt
simulations, since the 4d correlation length of the systeongly depends on this ratio.

After taking the continuum limit in the fifth dimension, onarmot proceed further to remove
the remaining lattice spacirgg However, the continuum limit can be approached in the stvae
if the correlation length of the lattice modé&lbecomes very large compared to the lattice spacing
a, the low-energy sector of the model becomes insensitivhaaletails of the discretization and
the continuum symmetries get restored.

3. Phasediagram

As a first step to understand our model, we start by mappingteythase diagram in the
(Bs,Ns)-plane. For the isotropic uncompactified case the phaseaadfirst investigated by
Creutz [3], exhibits a confining phase at strong coupling af@bulomb phase at weak coupling.
We found this to be the case also for the system with anisiotraxgtion Eq. (2.2). The confining
phase is not connected to the weak coupling regime and timmirely a lattice artifact.

In the Coulomb phase, the correlation length is infinite, lirmg that any compactification
radius will lead to spontaneous breaking of the center syimynadong the fifth direction. We call
this the dimensionally reduced phase for reasons whichbedbme clear in the next Section.

Fig. 1 shows the phase diagram of our model in(iBigNs)-plane in theNs —  (i.e. as — 0)
limit, obtained mostly from #x N lattices. For any given value &6, one finds a confining phase
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and a dimensionally reduced phase, which are separateddnoadsorder phase transition in the
trivial 4d Ising universality class expected for a (4+1)gsrEstoring transition where the correlation
length of the Polyakov loop in the fifth direction diverges.e Wbte that this is in contrast with

the first-order transition observed by Creutz and is due @¢ontbakening of the transition by the
anisotropic lattice spacing in the fifth direction: incrie@sNs at fixedNs smoothens the transition

out and eventually turns it into a second-order one.

4. Dimensional reduction

In this Section we study the dimensionally reduced phass, ifirthe weak (bare) coupling
limit Bs — oo, then by numerical lattice simulations demonstrating thatdescription obtained in
the weak coupling limit can be extended to non-zero coupling to corrections whose role will be
discussed. In particular, we introduce an asymptoticadlg flimensionally reduced renormalizable
effective theory for the long distance correlators, whasa¥n properties can be directly translated
to describe the properties of the 5d theory.

At separationsAx large compared to the compactification scale, > Ls, an effective
SU(2) + adjoint Higgs theory for the static Kaluza-Klein nesdf the gauge fields can be written

1 1
Sott = Z / d*x (ETrFﬁV +Tr [D“A5]2+m§TrA§+)\TrA§> + 8.7, (4.1)
4

where the last term. collectively denotes higher order terms in the gauge fieldmse effects
are suppressed by powersrmilLs and turn out to be irrelevant for our purposes.

The parameters of the effective theory can be estimateeiwéak coupling limit by requiring
that, in the regime where the effective theory is expectedite a good description of the full
theory, the correlators of the full and of the effective ttyematch to a given order in the bare
couplinggs. To leading order this gives for the renormalized 4d coygptinnstant and mass 8§

2 2
Gills) = (= méiLs) 0 B, 4.2)
While at leading order the parameters of the effective hace functions of s andg2/Ls only, at
higher loop orders the divergences in the 5d theory give midgece also ogZ/a.

In contrast with the gauge fields in the fifth direction, thatist Kaluza-Klein modes of the
gauge fields in the usual four directions do not perturbbtiebtain mass. As a consequence, at
length scaleax > mgl the theory is described by a four-dimensional continuune giauge theory

1
_ [ 2
Stt _/d Kot TP 4.3)
The four-dimensional Yang-Mills theory is well-known to merturbatively generate a gluon
mass, implying a non-zero four dimensional string tensarttie full five-dimensional theory

1 1 1 BsNs
~ — - ~ —— - 4.4
o1 LS exp{ bogﬁ('-rs)] a?NZ exp{ 4o ] ’ (4.4)

with by = 11/24r for SU(2).
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Figure2: Left: String tension measured from a set 686N; lattices with fixedNs. In the limitNs — oo, the
data become consistent with Eq. (4.4). Right: Simulaticults for the mass of th&s field in units of the
square root of the 4d string tension, versus the stringaderniunits of the lattice spacing. Data are obtained
at fixedNs/y = 2 and for differenfN5 values. The solid curve shows the extrapolation toNkie- o limit.

We have numerically checked the behavior predicted by Ed).(#he results are shown in the
left panel of Fig. 2, where the string tension extracted ftoralon correlators is displayed for fixed
Ns = 2 and increasindys. While for smallNs, the fitted coefficient in the exponential is quite large,
approaching the continuum limit in the fifth direction makies data consistent with Eq. (4.4).

In this setup dimensional reduction takes place, not onlgms — 0, but also in a highly
counter-intuitive way when the extent of the fifth directibacomes large in units of the cutoff,
i.e.,Ns ~ Ls/a>> 1. Consider Eq. (4.4) keeping the four-dimensional stramsionos and the
bare coupling3s of the 5d theory fixed. It implies that increasig linearly results in an exponen-
tial increase in the 4d correlation lengfly /a = 1/+/ 04982 ~ Nsexp(+BsNs/8bg), rendering the
extent of the fifth dimension in units of 4d measurable qigsti

Ls/&aq ~ exp(—BsNs/8byp) (4.5)

vanishingly small in the limiNs — . That is, when the extent of the fifth dimension is taken to
infinity in units of the ultraviolet cutoff, it goes to zero imits of a four-dimensional observer [4].

5. Approaching the continuum

In this Section, we discuss how the results of the previouti@es can be used to approach
the continuum in the sense of letting the correlation lesdithcome large compared to the lattice
spacing in the 5d theory. First, we note thalNgsnds appear in symmetrical form in the effective
theory of Eq. (4.3) we can take a continuum limit either atdikg by taking8s — , or as well by
keeping the bare coupling constgBtfixed and taking\s — c, marked by the two green arrows
in Fig. 3. This does not contradict the non-renormalizgbihf the 5d theory, since in this limit the

1we do not consider this case further as in this limit the extérthe extra dimension is smaller than the lattice
spacing and cannot possibly describe the low-energy settofive-dimensional continuum theory.
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Figure 3: Sketch of the lines of consta#igms (solid black lines) anaiuga® (dashed blue lines). At large
Bs, the lines of constarfygms tend to hyperbolaBsNs/y = const. When moving up along each line of fixed
&4ams (brown arrow), successive lines of constamga® are crossed and the 4d lattice spacing is reduced.
The 4d lattice spacing can be reduced also by increg&jmg Ns = Ns/y. In these cases, lines of constant
&4qms are crossed, implying the decoupling of the gauge #eld

five-dimensional degrees of freedom decouple and the taoginuum theory will be nothing but
the usual renormalizable 4d pure gauge theory.

On the other hand, in order to investigate the more intergstase of a theory which still
includes features derived from the original five-dimenalomodel while letting the correlation
lengths diverge in lattice units, one can use the freedomring) the parameters of the bare theory.
This can be accomplished by lettidgy/a — o while keepingésyms fixed. In the weak coupling
limit this is achieved by keepingZ/Ls (or equivalentlyNsps) fixed and taking\s — . These
lines would correspond to hyperbolas in Fig. 3. Howeverhwibn-zero coupling the matching
coefficients acquire also dependenceg@‘a (or onBs), deforming the hyperbolas. These lines can
be tracked either by computing the matched coefficientsgbdtiorders in perturbation theory, or
even better by determining the mass non-perturbativelgiepgcted in the right panel of Fig. 2.

Due to the second-order nature of the phase transition leettie dimensionally reduced and
confined phases, the lines of fixégyms cannot intersect the phase transition line whege— 0.

As a consequence, close to the transition the lines of #&guhs (solid lines in Fig. 3) will bend
along the transition line. This allows tuning the correlatlength of the static Kaluza-Klein mode
to arbitrarily large values for any givalagms. However, at the phase transition it is only the static
KK-mode of the gauge field in the fifth direction that divergegentually decoupling the rest of the
KK-tower in this continuum limit. Again, the continuum tartheory is four-dimensional, namely
SU(2) + adjoint Higgs (arrow in Fig. 3), and there is no codiction with non-renormalizability.

6. Conclusions and implications for phenomenology

We have presented a study of 5d SU(2) gauge theory on a lattibea compact dimension
of sizeLs. The theory is non-renormalizable, but the dynamical gatiwr of a scale hierarchy
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between the cutoff scale, the compactification scale, aaddhr-dimensional correlation length

allows one to make non-perturbative predictions aboutdahednergy sector of the continuum the-
ory using numerical lattice simulations. We used anisatrdgittices to accommodate the large
correlation lengths in the four usual directions and to cedihe discretization errors in the fifth di-

rection. This turned out to be essential for checking nucadlyi the scaling of the four-dimensional

string tension as given by Eq. (4.4). While the simulatiores performed are in agreement with
those of Ref. [5], our conclusions differ significantly. larficular, our results demonstrate that
all attempts to take the cutoff scale to infinity inevitabdatl to continuum target theories which
are four-dimensional. A five-dimensional continuum limithere the correlation lengths of an
arbitrary number of KK-modes would diverge in units of theaffiscale, cannot be reached.

Our strategy can be employed to produce phenomenologiaahiyesting non-perturbative
predictions of continuum theories. In particular, Eq. {4iélds a robust upper bound for the radius
of the extra dimension, with the only assumption that theedgthg theory can be described by a
5d gauge theory at the compactification s¢akor example, taking the electroweak scale as the 4d
scale and assuming the cutoff to be at the Planck scale ginesxamum compactification length
for the extra dimension of the order ofmgl. Another application is the possible detection of the
static KK-mode of the gauge field in the fifth direction. Inghiase, our strategy can be used to
extract a non-perturbative estimate for the onset scalewfphysicsA. If the massms and the
self-couplingA of the scalar Higgs-like particle can be determined, sdytate LHC experiments,
this information can be non-perturbatively mapped viddatsimulations to the two parameters of
our lattice modePs, Ns, from whichLs andA can be uniquely determined.

In the present study we have only considered the simplesilpgesnon-Abelian 5d model.
While many of our predictions generalize to more realistiodels, possible future extensions of
this work include its extensions to higher rank groups, agoedating e.g., the Hosotani mecha-
nism, and a systematic classification of the effects of thentary conditions. Finally, our five-
dimensional model also provides a natural setup for theugmeh of light fermions in a domain-
wall-like construction.
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2This can be seen in Fig. 3: along a dashed line correspondiaggiven value of the cutoff, i.eca?, the ratio
Ns ~ Ls/a cannot exceed the maximum value reached at the intersewiiothe phase transition line.



