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1. Introduction

In recent years a number of lattice models with at least oaetesupersymmetry at non-zero
lattice spacing have been proposedropological twist and orbifold projection are the main new
ideas behind these approaches, which however allow in gemrelly one exact lattice supersymme-
try. The link approach was proposed to overcome this linoiteand realize exactly on the lattice
all supersymmetries in some models with extended superggmi?, 3, 4, 5]. The key new in-
gredient of this approach with respect to the ones mentiabege (to which it is however deeply
related [6]) is the introduction of extended lattices witld@ional “fermionic” links on which su-
persymmetry charges sit. As a consequence of the link nafutlee (super)symmetry charges,
modified Leibnitz rules have to be applied when (super)dmagt on a product of (super)fields.
Hence both the consistency and the relevance of the linloapprto the description of exact lattice
supersymmetry has been questioned [7, 8]. However it has $le@vn recently by some of the
present authors that a consistent mathematical set upddinthapproach can be given in terms
of Hopf algebras [9]. The introduction of new links and netesiimplies that a larger number
of degrees of freedom is present in the link approach fortimanamely that the theory contains
doublers both for bosons and fermions unless some mechamifeuand to get rid of them. This
is one motivation for looking at the simplest supersymngetgistem: amN = 1 supersymmetry in
one space-time dimension. In spite of its simplicity theegtgation of this model in the frame-
work of the link approach offers some insight into some ratg\problems, including the doublers
mentioned above, and it is worth pursuing. This will be thigjsct of the present talk.

2. D=1, N=1 mod€

The simplest supersymmetric model is a one dimensional hnatlejust one supersymmetric
charge. Itis described in terms of a superfield:

D(x,0) = (x)+i0Y(x) (2.1)

with a supersymmetry charge given by:

J .0
and 5
2 —i—. 2.3
Q=g (23)
The free action is given by
[ 0o
S= é/olxola Do 2 (2.4)

whereD is the super derivative. Because of the fermionic naturéehefduperspace integration
volume no potential can be written in terms of the superfield the theory is essentially free.
On the lattice the derivativ% is replaced by finite shifdy, defined by:

AD(X) = D(X+ a)A, (2.5)

For a review see [1] and references therein.
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wherex andx+ a are two neighboring sites separated by the lattice spacing
In the link approach a shifig is associated to the supersymmetry cha&pgand since eq. (2.3)
is replaced by
Q’=iA (2.6)

we haveag = §. The supersymmetric extended lattice is then given by ertegultiples ofg, thus
doubling the number of the the original lattice sites. Wauass here tha@ acts on the fields as a
shift? of g, just ash acts as a shift ad. The question now is: What makes this lattice different from
just an ordinary lattice with spacing? The answer is in the different behaviour of bosonic and
fermionic fields with respect to shifts §f namely with respect to supersymmetry transformations.
In the continuum a constant bosonic field commutes Withience for a constant field we have on
the lattice:

B(x+5) ~(x) =0 @7

which implies thatg is constant on the lattice. A constant fermionic field indtaaticommutes
with Q: {Q, ¢} =0. If we assume that on the lattiQesimply acts as a shift & , then{Q, ¢/} =0
implies for a constant fermionic fielgh (x):

X+ 5)+h(x) =0, (2.8)

namely
W) = (—1) < go, (2.9)

whereyy is a constant an% is an integer on the lattice.
Physical fields are fluctuations around constant configamatiOne can then tentatively write
a superfield on the lattice as

O(x) =X+ (=1 y(x) (2.10)

where¢ (x) and g/(x) are smooth fields, in the sense that for insta¢e+ ) — ((x) is of order
ain the continuum limit. The smooth fielgi(x) is related to the original lattice fermiafy (x) by
the relation

WX =(-DTPX) (2.12)

so thatys (x) satisfies the smoothness conditigr(x+ §) + ¢ (x) = O(a). Eqg. (2.10) resembles
the usual superfield expansion with the sign fa¢tet)?/2 playing the role 0.
The supersymmetry transformations are given in the comtmhby:

3D(x,0) = a[Q,d)]. (2.12)

The lattice equivalent is

1 2 a
do(x) =a ta(-1)% (cb(x+§)—q>(x)), (2.13)
2This is in agreement with the matrix representation ofdat§uperspace given in [5]. Notice in particular that in
this wayQ does not contain any Grassmann odd parameter.
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where the constant fermionic parameteim the continuum has been consistently replaced on the
lattice byor(—l)zfaX . From here one can read the supersymmetric transformdtoti'e component
fields as

5000 = -5 |wct 3+ 00| 5 ~av0. 219
dy(x)=2ata ¢(x+g)—¢(x)} Qa%ﬁ(x). (2.15)

The supersymmetry transformations (2.14) and (2.15) Havedrrect structure, but they are
still not the right ones. In fact the variation ¢fx) at the I.h.s. of (2.14) is not real: arfactor is
missing. In order to restore the hermiticity of the supemetry transformations symmetric finite
differences must be used, introducing a shif§adf the fermionic fields sites with respect to the
bosonic ones. Hence, instead of writing the superfield oretiiee as in (2.10) we shall introduce
®d(x), with x=ng, defined by:

- $(x) for x=na/2
P(x) _{ %al/ZeZITnXL,U(X) for x=(2n+1)a/4. (2.16)

Again the supersymmetry transformations can be writteerims of®(x):
SD(x) = aa 26’ [d(x+a/4) — D(x—a/4)]. (2.17)

By separatingP(x) into its component fields according to (2.16) we find:

5000 =5 [wix+ P+ e | iavco. (2.18)
Sw(x)=2ata|p(x+ g) —Pp(x— %)] 0 aa(zix) , (2.19)

wherex is an even multiple o&/4 in (2.18) and an odd one in (2.19). As in the continuum case th
commutator of two SUSY transformation is a translation, eptron the lattice, a finite difference
of spacinga. For instance we have f@r(x) (the same applies g (x)):

858a®(X) — 3aBp$ (x) = 2 B[P (x+2/2) — $(x—2a/2)]. (2.20)

To summarize: even in this extremely simple case exact sypgnetry on the lattice requires the
doubling of lattice sites for both bosons and fermions, Withlattice spacing halved froato a/2,
the alternating sign structure for the fermion fields, andyreserve hermiticity, a relative shift of
a/4 of the boson and fermion lattice sites so that ultimatety effective lattice spacing ia/4.
The price we had to pay for introducing supersymmetry is thebting of both boson and fermion
degrees of freedom. How to reduce them to the original numiittiout spoiling supersymmetry
is the next task. For this purpose we shall move from cootditamomentum representation.

3. Momentum Space

Let us consider first the Fourier transform of the componetddiy(x) and¢ (x), and denote
them by @(p) and ¢ (p) respectively. The lattice spacing beiag2, the Brillouin zone extends
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over a?” interval and besides the physical statep at 0 will include doublers ap = 2. Hence

we have: - 4 :
¢(p+;)=¢(p), <lf(p+;)=—tlf(p), (3.1)

where the minus sign in the case fis due to thea/4 shift in coordinate space. The supersym-
metry transformations (2.18) and (2.19) are then given by:

56 (p) = icos™" ap(p). (3.2)
5p(p) = iz sin L ag(p). (3.3)

Egs. (3.2) and (3.3) are consistent with both the periodioinditions (3.1) and with the reality
conditions expressed in momentum space@ip)’ = ¢ (—p) andP(p)T = P(—p).

Let us consider now the Fourier transfoﬁmﬁp) of the superfieldp(x) given in (2.16) . At
each value op, ®(p) has a bosonic componed,(p) and a fermionic on@s (p) given by:
. al/? 21
®o(p)=6(p), @i(p) = —P(p+—)- (3.4)
The periodicity inp of CT)b(p) and CT)f(p) are the same af(p) and §(p) respectively. The super-
symmetry transformations can be easily written in term@@ﬁ):

dD(p) = —2iaa‘1/2cos?&>(p+ 2371) (3.5)
which is equivalent to (3.2) and (3.3). The physical fields tnctuations aroungh = O of the
bosonic componerdy,(p), and aroundp = — 2 for the fermionic componends (p). In terms of
®, these two physical degrees of freedom have a natural ietetjpn of being species doublers
to each other. The configurations@at= 0 andp = —%" correspond respectively to constant and
alternating sign configurations on the lattice of spadnas discussed above. Large fluctuations
are, however, allowed on the lattice with the result of dogpthe number of degrees of freedom
with respect to the original lattice of spaciagIn particular doublers g =0 andp = —%’T with
the “wrong” statistics will appear. In order to reduce thgrdes of freedom to the original number
it appears most natural at this point to introduce a cutoftt@mmomentum, limiting the bosonic
modes to the standard Brillouin zorfe-Z, Z) and the fermionic ones to—3F,—Z). In other
words wavelengths shorter thatwill correspond to fermionic degrees of freedom, wavelbagt
longer thara to bosonic degrees of freedom. This amounts to impose theraimts

(=0 pe{- -1} and di(p=0 pe{-~T} (@8

These constraints are local in momentum space, hence higiniyocal in coordinate space and
they allow to express the value of the fields in the half-iatagultiples ofa in terms of the values
in the integer multiples. For example, from the first of (3.6)
a 1 (=pr-m

ma+-)=—Y ———¢@(na). 3.7
Non locality in this case does not arise, as in the SLAC dgvieafrom the definition of the
derivative on the lattice, but rather from the definition lod tsupersymmetric covariant derivative,
which involve finite differences over &spacing.
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4. TheAction

As remarked at the beginning the only possible superfieidmér this system is the free one
given in (2.4). This can be put on the lattice in superfieldation as:

n

o]

S= %_[ dp D(— p)sm—p sin ?p&J(p) (4.1)
The different factors in (4.1) are in one to one correspondemith the terms in (2.4): s'F?f{2 is a
finite difference of spacing and corresponds to the super derivaiivevhile sin""—zp is the lattice
version of the normal derivativ%. The superfielcﬁ)(p) is the one givenin (3.4) and the constraints
(3.6) are understood. For each valuepofﬁb(p) is purely bosonic or fermionic. The integration
region covers the bosonlc range 7, 7} and the fermionic range— —2'}. The action changes
sign whenp — p+ 3, SO an integration over the Who§ would |dentically vanish. It can be
checked directly that the actionl4 is invariant under the supersymmetry transformations) (36
terms of component fields (4.1) can be written as:

a _ap . ap a ap . ap

S= 2n/_dp[¢< p)sin- sin- §(p) — zB(~p)cossinz-B(p)|  (4.2)
and itis invariant under SUSY transformations (3.2) and@)(3The fields in (4.2) are defined in the
{—2, 2} range of the momentum and can be associated in the coordipate to fields defined on
a lattice of spacing®. Let us denote thenf (an) and {J(am) to distinguish them fromp (x) and
Y(x) defined on a lattice of spacir§y A simple Fourier transform allows then to write the action

(4.2) in the coordinate space, exhibiting its non local reatu

2V/2 mn 3 1
Z on [ (am)@ (an)(~1) <_16(m—n)2—9+16(m—n)2—l>

—i@(am)(an)(—)™ "a(m—n) ( - G(m_ln)z_ o+ l6(m—ln)2— 1)] L(43)

S=

5. Some Conclusions

This simple one dimensional model suggests that, withirettiended lattice of the link ap-
proach, component fields of a superfield expansion are ateddio different regions of the Bril-
louin zone as if they were species doublers of each other. &tum representation has a privi-
leged role in this approathand an exact supersymmetric action can easily be constrirctthis
representation. The price to be paid is some non localithéndefinition of the supersymmetric
transformations and ultimately of the action when the cimatg representation is used. This model

3Notice however that if the momentum integration in (4.2) eeiended to the whole Brillouin zone of the extended
lattice, that is the interva{f%”, 21, the result would be identical to the one given in (4.2). Ilatfthe doublers at
p= 2—" have the “wrong” statistics with respect to the symmetryhaf kagrangian density, and the integral over the
mterval {—— — I} vanishes identically. The constraints (3.6) may then bandegl as superfluous: bosonic modes
with wavelength less thamand fermionic modes with wavelength longer ttamaturally decouple.

4Momentum representation has been used in studying superstyin theories in low dimension. See for instance

[10] and, for some recent developments [11, 12].
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is very simple, in the sense that it contains only one supemsstric charge with no interaction.
So the extension to higher dimensions, or at least to extesigigersymmetries in one dimension is
essential.

This will probably require a non commutative lattice. thguanent is the following: consider
aD = 2, N = 1 supersymmetry with supersymmetry algeQ{a: %, Q% = a% and{Q1,Q,} =0.
Then a superfield expansion on the lattice in the spirit df@Rwould be:

p y x y
(D(X7y) = ¢(X7y) + (_1) a LlJl(X7y) + (_1) gLIJZ(Xay) + (_1) a (_1) a F(X7y) (51)

For this superfield to generate a consistent supersymniigiaction term the sign facto(&l)zfax

and (—1)23y have to anticommute (just & and 6, would). This would imply non-commutative
space-time on the lattice, giving _
I 2
X,y = —a 5.2
x¥ = 7= (5.2)
with commutativity recovered in the continuum lingit— 0. The relevance of non commutative

lattices in the link approach has already been considerfiBin
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