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1. Introduction

With the existing evidence for the triviality of the Higgscser of the electroweak Standard
Model, rendering the removal of the cutdfffrom the theory impossible, physical quantities in this
sector will, in general, depend on the cutoff. Though thi&rietion strongly limits the predictive
power of any calculation performed in the Higgs sector, iemmgp up the possibility of drawing
conclusions on the energy sc#leat which new physics has to set in, once, for example, thesdigg
boson mass has been determined experimentally.

The main target of lattice studies of the Higgs-Yukawa seofahe electroweak Standard
Model has therefore been the non-perturbative deternoinati the cutoff-dependence of the upper
and lower bounds of the Higgs boson mass [1, 2] as well as @aydproperties. There are two
main developments which warrant the reconsideration cfettpiestions. First, with the advent of
the LHC, we are to expect that properties of the Standard Mdags boson, such as the mass
and the decay width, will be revealed experimentally. Sd¢cdimere is, in contrast to the situation
of earlier investigations of lattice Higgs-Yukawa modeds 4, 5, 6], a consistent formulation of
a Higgs-Yukawa model with an exact lattice chiral symmeifj/jased on the Ginsparg-Wilson
relation [8], which allows to emulate the chiral charactéthe Higgs-fermion coupling structure
of the Standard Model on the lattice while lifting the unwethfermion doublers at the same time.

Since the question for the lower Higgs boson mass bound dswtie phase structure of the
underlying model has already been addressed in Refs. [9,11@,2], we will here focus only on
the discussion of our results concerning the cutoff-depahdpper Higgs boson mass bound.

2. TheSU(2)L x U(1)y lattice Higgs-Yukawa model

The model we consider here is a four-dimensional latticegslifukawa model with a global
SU(2). xU(1)y symmetry [7], aiming at the implementation of the chiral gegfermion coupling
structure of the pure Higgs-Yukawa sector of the Standardéfieeading

Ly =W (t_,b)L¢bR+yt (Eb)L¢tR+C.C, (2.2)

with y; p, denoting the top and bottom Yukawa coupling constants. terieave restricted ourselves
to the consideration of the top-bottom douhleb) interacting with the complex scalar doublfet
(¢ =it20*, 7 : Pauli-matrices), since the dynamicsgnfcontaining the Higgs mode, is dominated
by the coupling to the heaviest fermions. For the same reasoalso neglect any gauge fields in
this approach.

The fields considered in this model are thus the aforemestiaoubletp as well asN; top-
bottom doublets represented by eight-component spigidts= (t),b1)), i = 1, ....N¢. The chiral
character of the targeted coupling structure (2.1) canliegoreserved on the lattice by constructing
the fermionic actior:= on the basis of the Neuberger overlap operator [13] accgritin

Nt ) ) ~ .
=2 GOy, .t =2 1P ¢ diag(y,yo) P- + P diag(y, o) 9P, (2.2)
i=

where the scalar fielg has been rewritten as a quaternionics 2 matrix @ = (x, §x), with x
denoting the site index of thie2 x Li-lattice. The left- and right-handed projection operatBrs
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and the modified projectof; are given as

1+ A 5 " 1
Pt B BE o (1-200). 23

with p being the radius of the circle of eigenvalues in the complexig of the free Neuberger
overlap operator [13].

This action now obeys an exact global @ x U(1)y lattice chiral symmetry. Fof €
SU(2) ande € R the action is invariant under the transformation

U—WPY+UWQ Py, §— gP.olul+gP Ul (2.4)
p—UvpQl, o —Qe'ul (2.5)

with the compact notatioly = exp(ieY) denoting the respective representations of the global
hypercharge symmetry grolp(1)y for the respective field it is acting on. In the continuum timi
Eq. (2.4-2.5) eventually recover the (here global) contmiSU2); x U(1)y chiral symmetry.

Finally, the purely bosonic pa& of the total lattice actios= S + S is given by the usual
lattice ®*-action

S =3 {%DL¢JDL¢X+%W%¢X*¢X+A (¢XT¢X)2}, (2.6)

with the bare massy, the forward derivative operatdEL in direction u, and the bare quartic
coupling constand .

3. Upper Higgs boson mass bounds

In the following the aim will be to determine the largest Higgoson mass attainable in the
considered Higgs-Yukawa model for a given cuidfiwhile being in consistency with phenomenol-
ogy. Here, the later requirement is translated into threéchirag conditions fixing the vacuum
expectation value of the scalar field) as well as the top and bottom quark masses, according to

7 \Y; _ M b
246GeV=—=———  A=al = 3.1
a \/Z'éf 5 Wb v s ( )

where we restrict ourselves to the mass degenerate casenyith=m,/a = 175GeV in order
to guarantee the fermion determinant (deft) to be real. As a starting point, we simply use the
tree-level relations in Eq. (3.1) to fix the bare Yukawa couplconstants. The actually resulting
fermion masses have explicitly been computed on the lattidech would eventually allow for

a more precise tuning of the Yukawa coupling constants biyba tree-level relation in some
follow-up studies. However, though not explicitly demaagtd in this paper, it is found that the
Yukawa coupling constants determined by Eq. (3.1) alreagyoduce the targeted fermion masses
with a deviation smaller than 2% in the here considered patansetups. The cutoff parameter
A can then (non-uniquely) be defined as the inverse latticeirspa*, which is obtained by
matching the lattice result on the renormalized vacuum etgpien valuev, = v/\/Zg with its
phenomenological value. The underlying Goldstone renbratson constanZg is given as

zgt= - [Ga(p2)]

3 ~
~dp Go(p) =13 ¥ (698%,). Gn(p) = (php), (3.2)

p%z—mé’ a=1
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with GH,G(p) denoting the lattice propagators of the Higgs and Goldstondes in momentum
space, respectively. For the details of how the aforemeedomodesﬁp, g7, and the vacuum
expectation valug are extracted from the scalar figjd the interested reader is referred to Ref. [9].
The Goldstone massg is then given by the pole of the Goldstone propagator, aaeg

Ga(pd)] —0,  Re([Ga(pd)] ) =0, (3.3)

pg:_m(z_f,p pg:_mlz-ip

Following the proposition in Ref. [14] the Higgs boson massthe other hand, is obtained here as
the zero of the real part of the inverse Higgs propagatondeery close to the actual pole of the
propagator [14] while being numerically much better acit#ss
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Figure 1. The Higgs boson massy and the renormalized quartic coupling const&nare shown versus
the bare coupling constaitin panels (a) and (b), respectively. These results have tletined in direct
Monte-Carlo calculations on a 36 32-lattice withNs = 1. The cutoff parameteh was intended to be
kept constant, while the actually obtained valueé dluctuate here between 1504 GeV and 1549GeV. The
horizontal lines depict the corresponding resultd at «, and the highlighted bands mark the associated
statistical uncertainties.

For clarification it is remarked thaBf, 5(pc) denote analytical continuations of the lattice
propagatoréH,G(p), since the latter are only defined at the discrete set of&attiomenta. These
analytical continuations have been obtained here by fittiedattice propagators with fit functions
derived from renormalized perturbation theory. As disedsim Ref. [14] the renormalized quartic
coupling constand; can then be defined as

(3.4)

From perturbation theory one would expect the largest Higgson mass to be observed at
infinite bare quartic coupling constarite. A = c. In Fig. 1 it is explicitly checked that the
renormalized quartic coupling constaktas well as the Higgs boson mass, itself are indeed
monotonic functions of the bare paramederconverging to their respective maximum/at= o,
as expected. For the purpose of determining the upper Higgsrbmass bound, the settihg=
is therefore adapted in the following.
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For the eventual determination of the cutoff-dependenggligoson mass bourmd'’(A) sev-
eral series of Monte-Carlo calculations have been perfdratadifferent values of\ and on dif-
ferent lattice volumes to finally allow for an infinite volunegtrapolation. In order to tame finite
volume effects as well as cutoff effects, we demand here asiana requirement that all particle
massesn= myp, M, M, in lattice units fulfill

m<05 and mM-Lg > 2, (3.5

at least on the largest investigated lattice volumes. Agsmyithhe Higgs boson mass to be below
700GeV this allows to reach energy scales between 1400 Gé\2800 GeV on a 32lattice.

In the following we useN; = 1, Ly = 32, andLs = 12,16,20,24,32 while the bare mass
parametemy is tuned to cover the aforementioned interval of accessib&rgy scales. In addition,
corresponding lattice calculations have also been peddrin the pured*-theory,i.e. with y; =
yp = 0, in order to estimate the strength of the fermionic contigns to the upper mass bound
mP(A\). The obtained finite volume lattice data are presented inZFig
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Figure 2: The Higgs propagator massyp is presented in units of the vacuum expectation valuversus
1/v. Those Monte-Carlo results with identical parameter sifisrethg only in the underlying lattice volume
are connected via dotted lines to illustrate the effectsheffinite volume. The dashed curves depict the
fits of the lattice results according to the finite size fit aygmh in Eq. (3.9) as explained in the main text.
Panel (a) refers to the full Higgs-Yukawa model, while pgbg¢lshows the corresponding results of the pure
®*-theory.

In order to understand the strong finite volume effects alexkin Fig. 2a we consider here the
constraint effective potenti&l [V]. In Ref. [10] it has been derived for the degenerate gasey,
in the largeN;-limit with A 0 N;* andy, 0N, 2. It then reads

2

—4 . (3.6)

Uy = %n%v2+m74+up[\7], Ue[V] = —Nl_z.zmg
p

1
+ g(1_ _— y+
2 v (p)+YtV<1 2" (p)>

whereUg [V] denotes here the fermionic contribution ant(p) is the eigenvalue of the free overlap
Dirac operator with non-negative imaginary part assodiatethe lattice momentum.

5
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Figure 3: The cutoff dependence of the upper Higgs boson mass bounelsiented in panel (a) as obtained
from the infinite volume extrapolation results of the dat&ig. 2. The dashed and solid curves are fits of the
data arising from the full Higgs-Yukawa model and the p@fetheory, respectively, with the analytically
expected cutoff dependence in Eq. (3.10). Panel (b) shosviatter fit curves extrapolated to larger values
of the cutoffA. In both panels the highlighted bands reflect the uncestaifithe respective fit curves.

An estimatemye of the Higgs boson mass can then be obtained from the cuevaftuthe
effective potential at its minimum, given by the vacuum etpgon valuev, yielding then

2
M2, — 8AV2— %dﬂvup W, + (;%UF o), (3.7)
which predicts the numerical results og;, well in the weak coupling regime [9.e. for A < 1.

In this case, however, we consider the setting o, rendering thus Eq. (3.7) inapplicable here.
Replacing the bare parametemwith its renormalized counterpait, which is well justified at the
considered order id, and exploiting also the expected functional form of theofftdependence
of Ar, which has been derived in Ref. [14] according to

A = Ay - [log(A2/p?) +B,] (3.8)

where double-logarithmic terms have been negleqtedenotes some unspecified scale, Agds
A, (u), By =B, (u) are constants, one directly arrives at the expression

2
+ dVUF[\V/]

V=v

8V2A, 1d, . .

" " logv2) 1B, v

: (3.9)

V=V

which has been used to fit the finite volume lattice data in Figith the free fit parameters, ,
B,. From the good agreement between the analytical fit curvédghannumerical data one learns
that the finite size effects are well understandable alredtlythe simple ansatz given in Eq. (3.9).
In particular, the finite size effects in Fig. 2a, which areamstronger than in Fig. 2b, can mainly
be ascribed to the fermionic contributions. This is also wdree would have expected, since the
top quark is the lightest particle in the here consideredage.
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After having performed an infinite volume extrapolation betfinite size lattice data, the
obtained results of that extrapolation are finally presgriteFig. 3a. These numerical data are
moreover fitted with the analytically expected functionainfi of the cutoff-dependence of the
Higgs boson mass, derived in Ref. [14] according to

H2 — A [log(\?/ 1) +Bu] 7, (3.10)

with Ay, = An(U), Bm = Bm() denoting the free fit parameters apdeing again some unspec-
ified scale here. One learns from this presentation that tpeated logarithmic decline of the
Higgs boson mass with increasing cutoff paraméteran very well be resolved. The fermionic
contribution to the upper Higgs boson mass bound, howesarnot clearly be identified with the
here available statistics. Finally, it is tempting to extehe fit curves to very large values 6f
This has been done in Fig. 3b. One finds that the resultingfedependent upper Higgs boson
mass bound would reach a value around 160 GeV at the Planiek sdach is in consistency with
earlier perturbative studies within the given uncertaisiti
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