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1. Introduction

The symmetry breaking in technicolor theories is communicated to the Standard Model by a
further interaction at some higher energy scaleM. There is a tension on the value ofM: on the
one handM needs to be large so that FCNC interactions are suppressed, on the other it needs to be
small to generate the heavier quark masses. The effective operator for the quark masses is:

L =
1

M2〈Φ〉ψ̄ψ , (1.1)

whereψ indicates the quark field, andΦ the field which is responsible for electroweak symmetry
breaking. In traditional technicolor modelsΦ = Ψ̄Ψ is the chiral condensate of techniquarks. The
coefficient in Eq. (1.1) is the chiral condensate at the scaleM:

〈Ψ̄Ψ〉
∣

∣

M = 〈Ψ̄Ψ〉
∣

∣

Λ exp

[

∫ M

Λ

dµ
µ

γ(µ)

]

, (1.2)

whereΛ is the technicolor scale. This suggests a possible way to resolve the tension onM: if γ is
approximately constant and large over a sufficiently long range in energies, then the condensate will
be enhanced. This scenario is known aswalking technicolor. Gauge theories with a large number
of fermions, or with fermions in higher–dimensional representations ofSU(N) [1], are candidates.
These theories could have a genuine IR fixed point (IRFP), or simply be close to one.

The existence of an IRFP is a difficult problem to address since it requires quantitative compu-
tations in a strongly–interacting theory. Lattice simulations provide first–principle results that can
help in determining the phenomenological viability of these models. A number of theories have
been studied recently: SU(3) with 8, 10, 12 flavors of fermions in the fundamental representation,
SU(3) with fermions in the sextet representation, and SU(2)with fermions in the adjoint represen-
tation. Existing simulations of the Schrödinger functional have identified a possible fixed point in
all the above–mentioned theories by noticing a flat behaviour of the running coupling.

In this work we focus on SU(2) with 2 adjoint flavours, and compute the running coupling in
the SF scheme. We also compute the running of the mass, and extract the anomalous dimension.

2. Basic formulation

We define the running couplingg2 non-perturbatively using the Schrödinger Functional method [2,
3]. This is defined on a hypercubic lattice of sizeL, with boundary conditions chosen to impose a
background electric field on the system. The spatial link matrices att = 0 andt = L are set to:

U(x,k)|t=0 = exp[ητ3a/iL] , U(x,k)|t=L = exp[(π −η)τ3a/iL] , (2.1)

with η = π/4 [4]. The fermion fields obey

P+ψ = 0, ψP− = 0 att = 0 , P−ψ = 0, ψP+ = 0 att = L , (2.2)

where the projectors are defined asP± = 1/2(1± γ0). The fermion fields also satisfy periodic
spatial boundary conditions [5]. We use the Wilson plaquette gauge action, and Wilson fermions
in the adjoint representation, as implemented in Ref. [6].
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The coupling constant is defined as

g2 = k

〈

∂S
∂η

〉−1

(2.3)

with k = −24L2/a2sin(a2/L2(π −2η)) chosen such thatg2 = g2
0 to leading order in perturbation

theory. This is a non–perturbative definition of the coupling which depends on only one scale,L.
To measure the running of the quark mass, we calculate the pseudoscalar density renormalisa-

tion constantZP. Following Ref. [7],ZP is defined by:

ZP(L) =
√

3 f1/ fP(L/2) , (2.4)

where f1 and fP are the correlation functions involving the boundary fermion fieldsζ andζ :

f1 = −1/12L6
∫

d3ud3vd3yd3z〈ζ
′
(u)γ5τaζ ′(v)ζ (y)γ5τaζ (z)〉 , (2.5)

fP(x0) = −1/12
∫

d3yd3z〈ψ(x0)γ5τaψ(x0)ζ (y)γ5τaζ (z)〉 . (2.6)

These correlators are calculated with the spatial link matrices att = 0 andL set to unity.
We run directly atκc, determined through the PCAC massmPCAC(L/2), where

mPCAC(x0) =
1
2(∂0 + ∂ ∗

0 ) fA(x0)

2 fP(x0)
(2.7)

and
fA(x0) = −1/12

∫

d3yd3z〈ψ(x0)γ0γ5τaψ(x0)ζ (y)γ5τaζ (z)〉. (2.8)

Here∂0 and∂ ∗
0 are defined by∂0 f (x) = f (x+1)− f (x) and∂ ∗

0 f (x) = f (x)− f (x−1). The corre-
lators are calculated on lattices of sizeL with the spatial link matrices att = 0 andL set to unity.

We defineκc by the point wheremPCAC vanishes on the 64 and 84 lattices, a linear extrapolation
in a/L from these values, and the values for 164 lattices quoted in Ref. [8]. In practice we achieve
|amPCAC| . 0.005. We check explicitly that there is no residual sensitivity to the small remaining
quark mass by repeating some of our simulations atmPCAC∼ 0.02.

3. Evidence for fixed points

Recent lattice studies have focused on the running of the SF coupling, emphasizing the slow
running of this quantity [9, 10, 11, 8]. These results have tobe interpreted with care. Lattice data
can find a range of energies over which no running is observed,but one cannot conclude that this
extends to arbitrarily large distances, as one would expectin the presence of an IRFP. On the other
hand, if the plateau has a finite extent,i.e. if the theory seems to walk, the behaviour of the running
coupling depends on the scheme, and therefore the conclusions become less compelling.

There are instances where the beta function of an asymptotically free theory is numerically
small. This is the case of the theory considered in this work in the perturbative regime. In this case,
even though the theory does not have a fixed point, the runningof the coupling is very slow. High
accuracy is needed in order to resolve a “slow” running; therefore numerical studies of potential
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IRFP need high statistics, and a robust control of systematics. In particular it is important to
extrapolate to the continuum limit to eliminate lattice artefacts.

Studies of the SF running coupling are a useful tool to exposethe possible existence of theories
that show a conformal behaviour at large distances. Howeverthe results have to be interpreted
with care; they are unlikely to provide conclusive evidenceabout the existence of a fixed point by
themselves. A more convincing picture can emerge when they are combined with spectral studies.

4. Results for the coupling

We have measured the couplingg2(β ,L) for a range ofβ ,L. Our results are plotted in Fig. 1.
They are directly comparable to those of Ref [8], and agree within statistical errors. It is clear that
the coupling is very similar for differentL/a at a given value ofβ , and hence that it runs slowly.

2.0 3.0 4.0 5.0 6.0 7.0 8.0
β

0.0

1.0

2.0

3.0

4.0

5.0

g2

L/a=16
L/a=12
L/a=10 2/3
L/a=9
L/a=8
L/a=6

Figure 1: Data for the running coupling as computed from lattice simulations of the Schrödinger functional.

In order to see how the coupling runs we define the step scalingfunctionσ(u,s) as

σ(u,s) = g2(sL)|g2(L)=u (4.1)

This is the continuum extrapolation ofΣ(u,s,a/L) which we calculate at variousa/L.
We interpolate quadratically ina/L to find values ofg2(β ,L) at L = 9,102

3 , which gives us
data for four steps of sizes = 4/3 for L → sL: L = 6,8,9,12; sL = 8,102

3 ,12,16. Then for each
L we perform an interpolation inβ . We can then find estimates ofΣ(u,4/3,a/L) at anyu. A
continuum extrapolation is then performed ina/L to give an estimate ofσ(u) ≡ σ(u,4/3). The
L = 6 data was found to have largeO(a) artifacts, and we have too fewL = 16 points to constrain
the interpolation functions, so neither are used in the continuum extrapolation.

The resulting values forσ(u) can be seen in Fig. 2. The systematic errors from varying the
interpolation functions or the continuum extrapolation were significantly larger than the statistical
errors. To quantify this, we recalculatedσ(u) with a range of different interpolation and extrapola-
tion functions. The resulting extremal values ofσ(u) were used as upper and lower bounds on the
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central value. The black error bars in Fig. 2 are determined in this way, but using only a constant
continuum extrapolation. These values are consistent witha fixed point in the regiong2 ∼ 2.0−3.2,
as reported in Ref. [8]. The errors from also including the linear continuum extrapolation are much
larger and mask any evidence for a fixed point, as also shown inFig. 2.

0.0 1.0 2.0 3.0
u

0.98

1.00

1.02

1.04

1.06

1.08

1.10
σ(

u)
/u

1-loop
2-loop

Figure 2: The relative step–scaling functionσ(u)/u. The black circles use only a constant continuum
extrapolation. The purple error bars include both constantand linear continuum extrapolations.

5. Running mass

We have measuredZP(β ,L) for a range ofβ ,L. We plot our results in Fig. 3, where we see a
clear trend inZP as a function ofL at all β . The step scaling functionσP(u,s) is then defined as:

σP(u,s) =
ZP(sL)

ZP(L)

∣

∣

∣

∣

g2(L)=u
(5.1)

We extract this from a continuum extrapolation ofΣP(u,s,a/L).
The method for calculatingσP(u) ≡ σP(u,4/3) is similar to that for calculatingσ(u). ZP

converges faster thang2 and we have better 164 data so here we use 4 points in our continuum ex-
trapolations. Again the errors are dominated by systematics, in particular the choice of continuum
extrapolation. We find good agreement with the 1-loop perturbative prediction.

We cannot determine directly the running of the mass with scale since we observe no running
of the coupling within errors. However, we can define an estimator for the anomalous dimension,

γ(u) = −
ln |σP(u,s)|

ln |s|
, (5.2)

which is equal to the anomalous dimension at an IRFP, and which we plot in Fig. 4. We see that
it is rather small over the range of interest; in particular,at g2 = 2.2, the benchmark value for the
IRFP in [8], we haveγ = 0.114+78

−35, and over the whole rangeg2 = 2.0− 3.2 consistent with an
IRFP in [8], we find 0.07< γ < 0.56.
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Figure 3: Data for the renormalisation constantZP from lattice simulations of the Schrödinger functional.
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Figure 4: The mass anomalous dimensionγ(u). Red error bars use only a linear continuum extrapolation.
Grey error bars include both constant and linear continuum extrapolations.

6. Conclusions

In these proceedings we have presented results for the running of the Schrödinger Functional
couplingg2 and the mass anomalous dimensionγ .

Our results for the running of the coupling are completely consistent with those of Ref. [8].
Our statistical errors are larger; however, we have carriedout our analysis in a way that allows us to
take the continnum limit with full control over the resulting systematic errors. Our results appear
to show a slowing in the running of the coupling aboveg2 = 2 or so, and are consistent with the
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presence of a fixed point at somewhat higherg2. However, once we include the systematic errors
from the continuum extrapolation that our results no longergive any evidence for a fixed point.

By contrast, we find that the behaviour of the anomalous dimension γ is much easier to es-
tablish. We find a moderate anomalous dimension, close to the1-loop perturbative prediction,
throughout the range ofβ explored. In particular, atg2 = 2.2, the benchmark value for the IRFP
in [8], we find γ = 0.114+78

−35. This value is much smaller than that required for phenomenology,
which is typically of order 1-2. Such large values ofγ are clearly inconsistent with our results.

The anomalous dimension is more vital than the running ofg2 for phenomenology; if it is not
large then the presence or absence of walking behaviour becomes academic. Hence the implications
of our measurement ofγ for minimal walking technicolor deserve to be studied carefully.

The results presented here are preliminary, and the systematic errors need to be reduced to
make our conclusions more robust. Using larger lattices would make the continuum extrapolations
more accurate, and it may also be necessary to use an improvedaction to reach the precision
required to show the existence of an IRFP or of walking behaviour. However this is very unlikely
to affect our phenomenologically most important result, namely thatγ is not large.
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