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1. Introduction

The symmetry breaking in technicolor theories is commueitdo the Standard Model by a
further interaction at some higher energy sdslle There is a tension on the value g on the
one handvl needs to be large so that FCNC interactions are suppressdite other it needs to be
small to generate the heavier quark masses. The effecteimp for the quark masses is:

o @)

wherey indicates the quark field, ard the field which is responsible for electroweak symmetry
breaking. In traditional technicolor models= WW is the chiral condensate of techniquarks. The
coefficient in Eq. (1.1) is the chiral condensate at the sighle

— — M du
(@), = (B, exp [ [ <u>] , (1.2)
whereA\ is the technicolor scale. This suggests a possible way tivethe tension oM: if yis
approximately constant and large over a sufficiently lomgyesin energies, then the condensate will
be enhanced. This scenario is knownaaking technicolor. Gauge theories with a large number
of fermions, or with fermions in higher—dimensional remetations o8J (N) [1], are candidates.
These theories could have a genuine IR fixed point (IRFP)ngplg be close to one.

The existence of an IRFP is a difficult problem to addressesimequires quantitative compu-
tations in a strongly—interacting theory. Lattice simigdas provide first—principle results that can
help in determining the phenomenological viability of thesodels. A number of theories have
been studied recently: SU(3) with 8, 10, 12 flavors of fermmiomthe fundamental representation,
SU(3) with fermions in the sextet representation, and SUt) fermions in the adjoint represen-
tation. Existing simulations of the Schrédinger functibhave identified a possible fixed point in
all the above—mentioned theories by noticing a flat behavabthe running coupling.

In this work we focus on SU(2) with 2 adjoint flavours, and cargpthe running coupling in
the SF scheme. We also compute the running of the mass, aadtakie anomalous dimension.

2. Basic formulation

We define the running couplir@f non-perturbatively using the Schrédinger Functional rogt2,
3]. This is defined on a hypercubic lattice of sizewith boundary conditions chosen to impose a
background electric field on the system. The spatial linkrites att = 0 andt = L are set to:

U (X7 k)’t:O = exp[n T3a/i|—] Y (X7 k)’t:L - exp[(rr— ’7)‘[3a/“-] ) (2-1)
with n = /4 [4]. The fermion fields obey
Py=0 ygP_.=0att=0 , P y=0 ¢gP =0att=L, (2.2)

where the projectors are defined Bs = 1/2(1+ y). The fermion fields also satisfy periodic
spatial boundary conditions [5]. We use the Wilson plagugtuge action, and Wilson fermions
in the adjoint representation, as implemented in Ref. [6].
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The coupling constant is defined as

o= k<g—s’>_l (2.3)

with k = —24L2/a?sin(a?/L%(m— 2n)) chosen such tha? = g3 to leading order in perturbation
theory. This is a non—perturbative definition of the coughmhich depends on only one scdle,

To measure the running of the quark mass, we calculate thelpsealar density renormalisa-
tion constanZp. Following Ref. [7],Zp is defined by:

Zo(L) = v/3T1/a(L/2). (2.4)

where f; and fp are the correlation functions involving the boundary fesmfields andZ:
fi = ~1/12L° [ fudvayd2(Z (Wysrd (VT )1 (2) (2.5)
fola) = ~1/12 | dydz(Wxa) TP (o) (Y)167% (2). 26)

These correlators are calculated with the spatial link imegratt = 0 andL set to unity.
We run directly at., determined through the PCAC masscac(L/2), where

1 *
meesc(o) = 210200 al0) @7
and B
falxa) = —1/12 [ Syd2( (00167 ()T (V1674 (2). @8)

Heredp anddy are defined by f (x) = f(x+ 1) — f(x) anddg f(x) = f(x) — f(x—1). The corre-
lators are calculated on lattices of sizavith the spatial link matrices at= 0 andL set to unity.

We definex. by the point wherenecac vanishes on the*and & lattices, a linear extrapolation
in a/L from these values, and the values fof fitices quoted in Ref. [8]. In practice we achieve
|ampcac| < 0.005. We check explicitly that there is no residual sensititd the small remaining
guark mass by repeating some of our simulationsgaiac ~ 0.02.

3. Evidence for fixed points

Recent lattice studies have focused on the running of theo8pling, emphasizing the slow
running of this quantity [9, 10, 11, 8]. These results havbdanterpreted with care. Lattice data
can find a range of energies over which no running is obselwatdpne cannot conclude that this
extends to arbitrarily large distances, as one would exipabie presence of an IRFP. On the other
hand, if the plateau has a finite exterg, if the theory seems to walk, the behaviour of the running
coupling depends on the scheme, and therefore the conttusacome less compelling.

There are instances where the beta function of an asymallgtitee theory is numerically
small. This is the case of the theory considered in this wotké perturbative regime. In this case,
even though the theory does not have a fixed point, the rurofitige coupling is very slow. High
accuracy is needed in order to resolve a “slow” running; df@e numerical studies of potential



U(2) with two adjoint fermions Francis Bursa

IRFP need high statistics, and a robust control of systematin particular it is important to
extrapolate to the continuum limit to eliminate latticeedaicts.

Studies of the SF running coupling are a useful tool to explus@ossible existence of theories
that show a conformal behaviour at large distances. Howtaeeresults have to be interpreted
with care; they are unlikely to provide conclusive evideab®ut the existence of a fixed point by
themselves. A more convincing picture can emerge when treeganbined with spectral studies.

4. Results for the coupling

We have measured the couplig§(3,L) for a range of3,L. Our results are plotted in Fig. 1.
They are directly comparable to those of Ref [8], and agrabiwbtatistical errors. It is clear that
the coupling is very similar for differerit/a at a given value of, and hence that it runs slowly.
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Figure 1: Data for the running coupling as computed from lattice satiohs of the Schrédinger functional.
In order to see how the coupling runs we define the step schlimdion o(u,s) as
(u,9) =T(sL)lgz(L)—u (4.1)

This is the continuum extrapolation &fu,s,a/L) which we calculate at variousy/L.

We interpolate quadratically ia/L to find values ofg?(B3,L) atL = 9, 10%, which gives us
data for four steps of size=4/3 forL — sL: L =6,8,9,12;sL =8, 102,12,16. Then for each
L we perform an interpolation ifB. We can then find estimates &fu,4/3,a/L) at anyu. A
continuum extrapolation is then performedayL to give an estimate o (u) = o(u,4/3). The
L = 6 data was found to have lar@¥a) artifacts, and we have too felw= 16 points to constrain
the interpolation functions, so neither are used in theinaotn extrapolation.

The resulting values foo(u) can be seen in Fig. 2. The systematic errors from varying the
interpolation functions or the continuum extrapolationrevsignificantly larger than the statistical
errors. To quantify this, we recalculatedu) with a range of different interpolation and extrapola-
tion functions. The resulting extremal valuesa(fu) were used as upper and lower bounds on the
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central value. The black error bars in Fig. 2 are determimeithis way, but using only a constant
continuum extrapolation. These values are consistentanfitted point in the regiog? ~ 2.0— 3.2,

as reported in Ref. [8]. The errors from also including tmedr continuum extrapolation are much
larger and mask any evidence for a fixed point, as also showigir2.
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Figure 2: The relative step—scaling functiam(u)/u. The black circles use only a constant continuum
extrapolation. The purple error bars include both constatlinear continuum extrapolations.

5. Running mass

We have measurefb(S,L) for a range of3,L. We plot our results in Fig. 3, where we see a
clear trend inZp as a function ot. at all 3. The step scaling functioap(u,s) is then defined as:

op(U,s) = % (5.1)
p(L) B(L)=u
We extract this from a continuum extrapolationXf(u,s,a/L).

The method for calculatingp(u) = op(u,4/3) is similar to that for calculatingr(u). Zp
converges faster thagf and we have better f@lata so here we use 4 points in our continuum ex-
trapolations. Again the errors are dominated by systemaiticparticular the choice of continuum
extrapolation. We find good agreement with the 1-loop pbetive prediction.

We cannot determine directly the running of the mass wittessiace we observe no running
of the coupling within errors. However, we can define an estimfor the anomalous dimension,

y(u) =

which is equal to the anomalous dimension at an IRFP, andnwhéplot in Fig. 4. We see that
it is rather small over the range of interest; in particultg? = 2.2, the benchmark value for the
IRFP in [8], we havey = 0.114"2% and over the whole rangg? = 2.0 — 3.2 consistent with an
IRFP in [8], we find 007 < y < 0.56.

Injop(u,s)

Inljs| ’ (5.2)
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Figure 3: Data for the renormalisation const&afit from lattice simulations of the Schrédinger functional.

0.5

0.4

0.3

y(u)

0.2

0.1

— 1-loop
e Statistical Erro

0.0 0.5 1.0 15 2.0 25 3.0 3.5
u

Figure 4: The mass anomalous dimensigiu). Red error bars use only a linear continuum extrapolation.
Grey error bars include both constant and linear continuxtmapolations.

6. Conclusions

In these proceedings we have presented results for thengiofithe Schrédinger Functional
couplingg? and the mass anomalous dimensjon

Our results for the running of the coupling are completelngistent with those of Ref. [8].
Our statistical errors are larger; however, we have cawigicur analysis in a way that allows us to
take the continnum limit with full control over the resultirsystematic errors. Our results appear
to show a slowing in the running of the coupling ab@?e= 2 or so, and are consistent with the
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presence of a fixed point at somewhat higger However, once we include the systematic errors
from the continuum extrapolation that our results no lorgjee any evidence for a fixed point.

By contrast, we find that the behaviour of the anomalous d#ieery is much easier to es-
tablish. We find a moderate anomalous dimension, close tddbep perturbative prediction,
throughout the range ¢ explored. In particular, a? = 2.2, the benchmark value for the IRFP
in [8], we find y = 0.114" 8. This value is much smaller than that required for phenortogyo
which is typically of order 1-2. Such large valuesyoére clearly inconsistent with our results.

The anomalous dimension is more vital than the running?dér phenomenology; if it is not
large then the presence or absence of walking behaviouniesacademic. Hence the implications
of our measurement of for minimal walking technicolor deserve to be studied calfgf

The results presented here are preliminary, and the systesraors need to be reduced to
make our conclusions more robust. Using larger latticesldvmake the continuum extrapolations
more accurate, and it may also be necessary to use an impantieth to reach the precision
required to show the existence of an IRFP or of walking behaviHowever this is very unlikely
to affect our phenomenologically most important resultnedy thaty is not large.
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