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1. Running coupling

There is great interest in the possibility that Beyond Standard Modelgshggght take the
form of new strongly coupled gauge theories [1]-[21], one examplegliechnicolor. For model
building, it is necessary to distinguish conformal theories from those withss igap like QCD.
There have been a number of lattice studies of this issue [23]-[32]. @nal $s the running
coupling, which has an infrared fixed point in a conformal theory. Weeldgped our method
for the running coupling and its beta function from the definition of the contimuenormalized
coupling constant using the second derivativ®ef T Wilson loops [24]. This coupling runs with
the size of the Wilson loop in infinite volume [33]. We generalized this definitiorfimmite volume
L% keepingR/L fixed and run the coupling with as in the Schrodinger functional method. A
similar method was developed independently in [32].

Consider Wilson loop®V (R, T,L), whereR and T are the space-like and time-like extents
of the loop, and the lattice volume i (all dimensionful quantities are expressed in units of the
lattice spacin@). A renormalized coupling can be defined by

RZ 92
~ k(R/L) dRIT

gZ<R/L7 L) = In<W(R7T7 L)> |T:R7 (1-1)
where for convenience the definition will be restricted to Wilson loops With R, and(...) is the
expectation value of some quantity over the full path integral. This definitionbeamotivated
by both renormalized and bare perturbation theory, where the leadingdd¢hma tree-level cou-
pling. The renormalization scheme is defined by hold®ig. to some fixed value. The quantity
k(R/L) can be calculated from Wilson loop expectation values using perturbatiorythehis is
done numerically on finite lattices, henkeontains lattice artifacts which vanish s~ «. The
role of lattice simulations is to measure the expectation values non-pertubpa@rethe lattice,
derivatives are replaced by finite differences, so the renormaliagaling is defined to be

F(R+1/2)/LL) = k(Rl/L)m 1/22(R+1/2,L),

W(R+1,T+1,LW(RT,L)
W(R+LT,L)W(R T +1,L)

X(R+1/2)L)=—In lT_R> (1.2)
wherey is the Creutz ratio [34], and the renormalization scheme is defined by holdinglhe of
r =(R+1/2)/L fixed.

With this definition, the renormalized coupling is a function of the lattice size and the
fixed value ofr. The continuum limit corresponds to— o, where the physical length scalgnys
is held fixed while the lattice spacireg— 0. The coupling is non-perturbatively defined, as the
expectation values are calculated via lattice simulations, which integrate oveitlthkease space
of the theory. One starts the RG flow from some reference physical jpgib which is set by the
choice e.gg?(r, Lphyso) = 0.8. In @ QCD-like theoryg? increases with increasirignys flowing in
the infrared direction. In a conformal theogy, flows towards some non-trivial infrared fixed point
g2 asLpnysincreases, whereas in a trivial theogy,decreases withppys

One way to measure the running of the renormalized coupling in the continuunmidima
step-scaling. The bare lattice coupling is defined in the usualﬁvayG/gS as it appears in the
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Figure 1: (Left) The rescaled Creutz ratio on a*2attice at@ = 6.99. We interpolate the data linearly to
r = (R+1/2)/L = 0.25, giving a chi squared per degree of freedom 2.0/4. (Rifh¢) measured coupling
gz(ZLi,Bi) for 2L = 20,24,28 and 32, wherg; is tuned such thagZ(Li,Bi) = 1.44. A linear continuum
extrapolation gives?(2Lpnys) = 1.636(23), with x?/dof = 0.57/2.

lattice action. On a sequence of lattice siked », ..., L, the bare coupling is tuned on each lattice
so that exactly the same valgé(r,L;, 3;) = g(r, Lphys) is measured via simulations. Next a new
set of simulations is performed, on a sequence of lattice sizeRl,...,2L,, using the corre-
sponding tuned couplingdy, B, ..., Br. From the simulations, one measuggér, 2L;, ), which
vary with the bare coupling i.e. the lattice spacing. These data are extrapttatee contin-
uum as a function of AL2. This gives one blocking steg#(r, Lpnys) — g(r, 2Lpnys) in the contin-
uum RG flow. The whole procedure is then iterated. The chain of measntegiges the flow
92(r, Lphys) — 2(1, 2Lphys) — G2(r, 4Lphys) — G2(r, 8Lphys) — ..., as far as is feasible. One is free to
choose a different blocking factor, shyhys — (3/2)Lpnys in Which case more blocking steps are
required to cover the same energy range.

2. SU(3) puregaugetheory

As our first test of this method, we stu@U(3) pure gauge theory in four dimensions. We
simulate using the standard Wilson lattice gauge action, with a mixture of fivereleation
updates for every heatbath update. We define the renormalization schémibevfixed value
r = 0.25, for brevity we omit the labelin the renormalized coupling. In thi®/L range, the Creutz
ratio can be accurately measured, and the geometric faconverges quickly to its continuum-
limit value. In the pure gauge theory test, we actually use the finitalues ofk, as this may
remove some of the cutoff dependence of the renormalized coupling. &&Ghlow we choose
the blocking stefh — 2L. We simulate on small lattices of sikze= 10,12 14,16,18 20 and 22, and
the corresponding doubled latticek 2 20,24, 28 32 36,40 and 44. Wilson loop measurements
are separated by 1000 sweeps, which we find is sufficient to genéasittically independent
configurations.

To tunef; for each small lattice sizlg, we typically run separate simulations at 5 — 10 different
B values in the relevant range of renormalized couptifgEach of these runs contains 300 — 500
measurements i.e. up tos10° sweeps. Simulating on the doubled lattices at the tyhelues,
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Figure 2. (Left) The continuum extrapolations of four discrete RGoste(Right) The RG rong(LphyS),
combining analytic lattice perturbation theory and theigation results. The running starts@(Lphyso) =
0.825. There is excellent agreement with continuum 2-loopingn at the strongest coupling, the simulation
results begin to break away from perturbation theory.

we generate between 200 and 1000 measurements each, typically moré@hah& signal of the
Creutz ratio disappears into the noise as the size of the Wilson loop incré&aseway to suppress
the noise in measurements is to gauge fix the configurations to Coulomb gadgeptace the
thin-link Wilson loop with the correlator of the products of the time-like gauge I[8ks 36]. Note
that gauge fixing is not implemented in the actual Monte Carlo updating algoritmraltérnative
method to suppress noise is to smear the gauge links and measure the fat-lork|dé|s operator.
In the pure gauge theory test, we use the gauge-fixing method, in the dahémicion simulations
we describe later, we use the smearing method. These improvement methadsdoespond to
calculating the original thin-link Wilson loop operator.

We show in Fig. 1 (left) a typical result for the rescaled Creutz r@ie 1/2)x. The doubled
lattice is 28 and the bare couplin = 6.99 is tuned from simulations on 44olumes. Errorbars
are calculated using the jackknife method. The renormalized coupling idedirthe point =
(R+1/2)/L = 0.25, corresponding tR+ 1/2) = 7 at this lattice size. We interpolate the data
linearly to this point, obtaining?/dof= 2.0/4. The data at differerR are highly correlated, being
measured on the same gauge configurations. To calculate an error, tve auge configurations,
and analyze and interpolate separately each bin, giving a distribution gbataeed values. An
example of the step-scaling method is shown in Fig. 1 (right). The bare cga@i® tuned such
that g?(L;, ) = 1.44 for L = 10,12, 14 and 16, the figure shows the daf42L;,3) for 2L; =
20,24,28 and 32. The leading lattice artifacts in the Creutz ratio are expected to trelef
0 (a?). This corresponds t&7(1/L?), since the physical lattice size lis. Extrapolating linearly
in 1/(2L)? givesg?(2Lpnys) = 1.636(23) andx?/dof = 0.57/2. For a systematic error, we omit one
data point at a time and repeat the extrapolation. Combined in quadrature evittatistical error,
our continuum result ig?(2Lphys) = 1.636(25).

We iterate the procedure, giving four discrete RG steps as shown in Haft)2 At stronger
coupling, we need lattices up td.i2= 44 for the continuum extrapolation. The use of the finite
L values ofk does not appear to reduce the cutoff effects. The continuum RG flooisrsin
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Figure3: The renormalized coupling?(L, 3) at fixed bare coupling faN; = 16 fundamental flavors. For
g?(L,B) > 0.5 the renormalized coupling decreases with increakirfgr g?(L, 3) < 0.5 the renormalized
coupling is independent df within the errors. This is consistent with the existence mofirffrared fixed
point.

Fig. 2 (right). At weak coupling, we use analytic/numeric lattice perturbatienrghto calculate
the Wilson loop ratios in finite volumes [37, 38]. The Wilson loops are calculateldloop in
the bare coupling in finite volume. The series is reexpanded in the boostgtingpconstant
at the relevant scale of the Creutz ratio. Step-scaling of the finite volume i&dio be used in
exactly the same way as for the simulations results, to determine the RG flow inrttieucmon.
The analytic RG flow starts at the reference p@f(tLpnyso) = 0.825. At weak coupling there is
complete agreement with 2-loop perturbation theory. We connect latticelpatitin theory to the
simulation results by matching the flowsggtLpnys) = 1.44, where the simulation RG flow begins.
There is continued agreement with 2-loop perturbation theory at evemgstraoupling, only at
the strongest coupling do we see deviation from the perturbative flow.

3. Fundamental fermions

We next studySU(3) gauge theory with fermions in the fundamental representation. For

N; = 16 flavors, 2-loop perturbation theory predicts the theory is conforritalam infrared fixed
point g*2 ~ 0.5. Because of the computational expense of step-scaling with dynamicaofes,

in this pilot study we have not yet extrapolated to the continuum limit. The runodngling
therefore is still contaminated with finite cutoff effects. If the linear lattice kitelarge enough,
the trend from the volume dependencegéfL, 3) should indicate the location of the fixed point.
For g?(L, B) > g*2 we expect decrease in the running couplind-agows, although the cutoff of
the flow cannot be removed above the fixed point. Below the fixed pointgfitlh 3) < g2 we
expect the running coupling to grow asncreases and the continuum limit of the flow could be
determined. The first results are shown in Fig. 3. We use stout-sme&stdggered fermions
[40, 41] and the RHMC algorithm, simulating at quark mags= 0.01, with some runs aty =
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0.001 to test that the mass dependence is negligible. For the Wilson loop ragies)ear the gauge
fields and measure the fat-link Wilson operator. Our experience in thegauge theory test is that
cutoff dependence is not reduced using the fihitealue ofk, hence we use the infinite volume

k value to convert the Wilson loop ratios to a renormalized coupling. The rem@tsonsistent
with the above picture. Fai’(L, 8) > 0.5, the cutoff dependent renormalized coupling decreases
with L. Forg?(L, ) < 0.5, the renormalized coupling Isindependent within errors. The theory
appears conformal but precise determination of the conformal fixed gmjoires further studies.
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