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1. Introduction

Besides tremendous research having been done since Kalowsgyéamous publication in
1941 [1], hydrodynamic turbulence essentially remains mgolved problem of modern physics.
This is especially remarkable as the fundamentals seemftirlyeeasy — the Navier-Stokes equa-
tions for the velocity fieldi, and pressur@

1
dtua+uﬁdﬁua—vD2ua+Edap:O (1.1)

with the additional constraint

simply express the conservation of momentum in a classimabmpressible fluid of viscosity
and densityp. For laminar flows it is well known that the Navier-Stokes atipns reproduce
realistic flows very accurately; in the turbulent regimés istill an open question how the universal
characteristics of turbulent flow, characterized by thdisgaexponentst,, of structure functions
S, of orderp, defined by

Sp(¥) = ulr +x) —u(r)[P ~ [x|°®, (1.3)

can be extracted from first principles. Here the bar cornedpado a spatial averaging.

Monte Carlo simulations in the path integral formulatioralele us to gain direct insight into
the formation of localized structures and their behaviod 8o measure observables as, e.g. struc-
ture functions and their scaling exponents [2—4].

2. Burgers Equation

We decided to elaborate the methods using the stochagtfoatied Burgers equation [5] in
1+1 dimensions
Gu-+udu—votu=f, (2.1)

which may be interpreted as the flow equation for a fully cosspible fluid. The stochastic force
is modeled to be Gaussian with correlation

X(xtx 1) == (F(xt) f(X,t')) = ed(t —t’)exp(—'x;\—x/'> , (2.2)

whereA\ defines the correlation length of the forcing and the ) denotes the ensemble average.
A finite viscosityv and energy dissipatioa provide a dissipation length scalecorresponding to
the Kolmogorov-scale in Navier-Stokes turbulence:

= (9 23)

We can furthermore identify the Reynolds-number as

Re:= (eN*/v3)1/3, (2.4)
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The fundamental solutions to the Burgers equation are kvelwn — in the limit of vanishing
viscosity (Hopf-equation) these form singular shocks. Atdidissipation scald ~ v/U, where
U is the characteristic velocity, provides an UV-regulditaa of the shock structures:

Y

= —Utanh—x. 2.5
u an 2Vx (2.5)

Most interestingly, the exponenég as defined in (1.3) are non-trivial for Burgers turbulenae; f
the forcing (2.2) and in the regime~ A we have the analytic result [6]

&p=min(1, p). (2.6)

3. Path Integral Formulation

Following the method of Martin, Siggia and Rose [7], we elishld a path integral for Burg-
ers’ equation

zZ0O / 2u exp( - %/dtdx(dtwr udkU — vAZu) X~ (Gu+ udu — vdfu)), (3.1)

wherex denotes the convolution.
It has been shown by Falkovich et al. [8, 9] on the basis of avatgnt sum of states that the
fundamental solutions of Burgulence can be understoodssaritons.

4. Monte Carlo Simulations

For 1+1 dimensional Burgulence, a large number of stablelsitions could be performed;
we are working on the final analysis. Typical lattice sizegygmfrom(Ny = 16) x (N; = 16) up to
(Nx = 4096) x (N; = 128) lattice points.

4.1 Boundary Conditions

To be in general agreement with literature and analyticutalions, we started with lattices
periodic both in time and space direction. In an attemptdace autocorrelation times, we dropped
these boundary conditions. While autocorrelation times bt change much, simulating with
free boundaries effectively doubles the spatial latticeerixand gives access to excitations of the
Burgers vacuum state.

4.2 L attice Discretization

Once having discretized the path integral on a Euclideaicdadf spacingg\x andAt, we get
for v:

(4.1)

The continuum limit of our lattice theory is reached by holfiv andReconstant while increasing
the number of lattice sitesy is an a priori arbitrary constant that can be interpreted measure
for At depending or\x and also has to be kept fixed while performing the continuumnit li
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Figure 1: Time-slice of a(Nx = 256) x (N; = 45)-lattice atRe= 4, v = 1/32, showing the velocity
u(x,t = consj as a function ok. The typical shock structure is clearly visible.

4.3 Algorithms

We use a local heat bath algorithm with successive overaiitan (SOR) for the Monte Carlo
evaluation of the partition function [11]. The use of camtaicceleration techniques with SOR,
specifically Chebyshev acceleration [12], significantlgederates the thermalization process.

Though suiting our purposes so far, it poses certain réisimgon parallelization. We therefore
started employing a Hybrid Monte Carlo algorithm that weeastfo scale better with the number
of parallel processors.

4.4 Autocorrelation Times

With x being a nonlocal operator one would expect long autocdiweldimes in the sim-
ulation of stochastically forced differential equatiortdowever, with the over-relaxed heat bath
algorithm and an appropriate definition of structure fumtsi on the lattice (where the reference
point for evaluation is chosen randomly for each configargtithe integrated autocorrelation time
is reduced ta ~ O(1).

4.5 Resources

For testing purposes small lattices may easily be simulatedesktop PCs. However, high
resolution simulations on large lattices require masgipalrallel architectures. We have run our
simulations on the IBM p690 cluster JUMP at FZ Jilich and am ltlux cluster at Humboldt
University Berlin with up to 256 processors in parallel. iiyJ2009 we continued our simulations
on the new supercomputer JUROPA at FZ Jiilich.



Monte Carlo approach to turbulence G. Minster

4.5e-06 T

T T T T T T
Third order structure function +

4e-06

3.5e-06

3e-06

2.5e-06

S 3(x)

2e-06

1.5e-06

1e-06 Hf

5e-07

0 100 200 300 400 500 600 700 800
X

Figure 2: Third order structure functiofz(x) as a function of space separation

5. First Results

First results include further constraints that have to bpdsed in order to ensure stable nu-
merics. Most constricting is the need to resolve the Kolnmogdéength scalel on the lattice. We
can in this way show the effect df as UV-regularization of the otherwise singular shocks.sThi
translates into a relation for the Reynolds-number:

N
Re< —. 51
< (5.1)

This will become crucial for Navier-Stokes turbulence e@aifag us to simulate big lattices.
5.1 Structure Functions

From analytic calculations [6] we have
Sp(x) ~ Cplx|P+Cplx], (5.2)

for small seperations in the inertial range.
Though our results are in general agreement with this, th@etion of scaling exponents is
far from trivial and very sensitive to statistical errors.

5.2 Extended Self-Similarity (ESS)

Rather than measuring the scaling exponéptdirectly, there have been attempts to measure
the scaling behavior of ratios of structure functions [1®was shown that this greatly enhances
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Figure 3: log[S3(x)] as function of lofS; (x)] clearly showing the linear ESS-dependence.

the inertial range not only at high but also moderate Reysnldmbers. However, we must stress
that up to now it is not clear if there are any systematic ¢ffét the evaluation of the structure
function exponents via ESS.

5.3 Outlook

After completing the analysis of 1+1 dimensional Burguksnge will proceed to 3+1 dimen-
sions. The ultimate challenge will be the simulation andhais of 2+1 and 3+1 dimensional
Navier-Stokes turbulence.
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