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We present a non-perturbative study of the running coupling constant in the Twisted Polyakov

Loop (TPL) scheme. We investigate how the systematic and statistical errors can be controlled

via a feasibility study in SU(3) pure Yang-Mills theory. We show that our method reproduces the

perturbative determination of the running coupling in the UV. In addition, our numerical result

agrees with the theoretical prediction of this coupling constant in the IR. We also present our

preliminary results forNf = 12 QCD, where an IR fixed point may be present.
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1. Introduction

The existence of non-trivial fixed points is one of most intriguing subjects in quantum field
theory. Field theories with fixed points exhibit scale-invariant behaviour and are often exactly
solvable. In addition, renormalization group (RG) flows around fixed points contain information of
the universality class of field theories.

Non-trivial fixed points have been identified non-perturbatively in two-dimensional scalar field
theories,via the techniques of algebraic method or Wilsonian RG. In the case of three-dimensional
scalar field theories, they can be found using the large-N expansion or Wilsonian RG. In four
dimensions, there is no non-trivial fixed point for scalar field theories. On the other hand, for
gauge theories in four dimensions, there are Gaussian fixed points. Furthermore, the perturbative
β function indicates the existence of non-trivial infrared (IR) fixed points for a certain region of
large-flavor (Nf ) SU(N) gauge theories. Possible appearance of these IR fixed points has stimu-
lated phenomenological studies of topics such as dynamical electro-weak symmetry breaking and
unparticle physics. The existence of these IR fixed points depends on the gauge group, the number
of flavours, and the representation of fermion fields. For SU(3) gauge theory with fermions in the
fundamental representation, such a fixed point has been predicted in the range 8< Nf ≤ 16 us-
ing perturbation theory [1]. However, the value of the renormalized coupling at the point depends
on Nf , and it may be in the regime where perturbation theory is not applicable. Therefore it is
important to investigate the existence of this IR fixed point non-perturbatively.

First such lattice study for SU(3) gauge theory was carried out in Ref. [2], where the authors
investigated the phase structure of the case ofNf = 16. Recently, Appelquistet al. performed
lattice calculation of the running coupling constant in the Schrödinger functional (SF) scheme and
discovered evidence of an IR fixed point in the case ofNf = 12 [3]. In their work, no such evidence
was found forNf = 8. Furthermore, two groups have studied the phase structure of theNf = 12
theory [4, 5]. However, the existence of IR fixed point is not firmly established yet [5]. The
difficulty is mainly due to scheme dependence of the running coupling constant and the presence
of significant lattice artifacts in the strong-coupling regime. Therefore it is important to measure
the running coupling in different renormalisation schemes.

In this work, we perform lattice simulation of the running coupling constant for the fundamental-
representation,Nf = 12, SU(3) gauge theory. Similar to the approuch of Appelquistet al., we
measure the step scaling functionσ(s,g2(L)) = g2(sL) keeping the values ofβ that give constant
g2(L) for each small lattice size. We work in the Twisted Polyakov Loop (TPL) scheme which
does not containO(a/L) discretization errors. These errors are present in the SF scheme due to the
boundary counterterm. This TPL scheme was first proposed by de Divitiiset al. [6, 7] for SU(2)
gauge theory, and we extend the definition of the scheme to the SU(3) case.

In this paper, we give a short review of TPL scheme in §.2. In §.3 we present a validity study
of this scheme by calculating the running coupling constant in SU(3) pure Yang-Mills theory. Our
preliminary results forNf = 12 SU(3) gauge theory is reported in §.4.

2. Twisted Polyakov Loop scheme

In this section, we present the definition of the Twisted Polykov Loop scheme in SU(3) gauge
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theory. This is an extension of the SU(2) case as discussed in Ref. [6]. To define the TPL scheme,
we introduce twisted boundary condition for the link variables inx andy directions on the lattice:

Uµ(x+ ν̂L/a) = ΩνUµ(x)Ω†
ν . (ν = 1,2) (2.1)

Here,Ων are the twist matrices which have the following properties:

Ω1Ω2 = ei2π/3Ω2Ω1,ΩµΩ†
µ = 1,(Ωµ)3 = 1,Tr[Ωµ ] = 0. (2.2)

The gauge transformationUµ(r) → Λ(r)Uµ(r)Λ†(r + µ̂) and eq.(2.1) imply

Λ(r + ν̂L/a) = ΩνΛ(r)Ω†
ν . (2.3)

Because of this twisted boundary condition, the definition of Polyakov loops in the twisted direc-
tions are modified,

P1(y,z, t) = Tr

(
[∏

j
U1(x = j,y,z, t)]Ω1ei2πy/3L

)
, (2.4)

in order to satisfy gauge invariance and translation invariance. The renormalized coupling in TPL
scheme is defined by taking the ratio of Polykov loop correlators in the twisted (P1) and the un-
twisted (P3) directions:

g2
TP =

1
k

〈∑y,zP1(y,z,L/2a)P1(0,0,0)†〉
〈∑x,yP3(x,y,L/2a)P3(0,0,0)†〉

. (2.5)

At tree level, this ratio Polyakov loops is proportional to the bare coupling. The proportionality
factork is obtained by analytically calculating the one-gluon-exchange diagram. To perform this
analytic calculation, we choose the explicit form of the twist matrices [8],

Ω1 =

 0 1 0
0 0 1
1 0 0

 ,Ω2 =

 e−i2π/3 0 0
0 ei2π/3 0
0 0 1

 . (2.6)

In the case of SU(3) gauge group,

k =
1

24π2 ∑ (−1)n

n2 +(1/3)2

=
1

24π2

[
9
2
− 3π

2
cosech

(π
3

)]
= 0.03184· · · . (2.7)

The naive twisted boundary condition for lattice fermions can be written by

ψ(x+ ν̂L/a) = Ωνψ(x). (2.8)

However, this results in an inconsistency when changing the order of translations, namely,

ψ(x+ ν̂L/a+ ρ̂L/a) = ΩρΩνψ(x),

6= ΩνΩρψ(x). (2.9)
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To avoid this difficulty, we introduce "smell" symmetry [9], which is a copy of color symmetry.
We indentify the fermion field as aNc×Ns matrix (ψa

α (x)). Then we impose the twisted boundary
condition for fermion fields to be

ψa
α(x+ ν̂L/a) = eiπ/3Ωab

ν ψb
β (Ων)†

βα (2.10)

for ν = 1,2 directions. Here, the smell index can be considered as a “flavor” index, then the number
of flavors should be a multiple ofNs(= Nc = 3). We use staggered fermion in our simulation. This
contains four tastes for each flavour. This enables us to perform simulations withNf ≥ 12 in this
SU(3) gauge theory with twisted boundary condition.

3. Quenched QCD case

Before carrying out the simulation forNf = 12, we first measure the TPL running coupling
in quenched QCD. The gauge configurations are generated by the pseudo-heatbath algorithm and
overrelaxation algorithm mixed in the ratio 1:5. One such a combination is called a "sweep" in
the following. In order to generate the configurations with the twisted boundary condition we use
the trick [10] proposed by Lüscher and Weisz. To reduce large statistical fluctuation of the TPL
coupling, as reported in Ref. [11], we measure Polyakov loops at every Monte Calro sweep and
perform a jackknife analysis with large bin size, typically ofO(103). This enables us to evaluate
the statistical error correctly. The simulations are carried out with several lattice sizes (L/a =
4,6,8,10,12,14,16) at more than twentyβ values in the range 6.2≤ β ≤ 16. We generate 200,000-
400,000 configurations for each(β ,L/a) combination. Figure1 shows theβ dependence of the

Figure 1: TPL renormalized coupling in the eachβ andL/a in quenched QCD.

renormalized coupling in TPL scheme at various lattice sizes. The results are fitted at each fixed
lattice size to the interpolating function which is similar to the one used in Ref. [3],

g2
TP(β ) =

n

∑
i=1

Ai

(β −B)i , (3.1)
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whereAi are the fit parameters, and 4≤ B≤ 5, n = 3,4 are employed. As a small lattice size of the
step scaling, we useL/a = 4,6,8,10. The step scaling parameter iss= 1.5, and we estimate the
coupling constant forL/a = 9,15 from interpolations at the fixedβ using the above fit results of
all the lattice sizes.

We take the continuum limit using a linear function in(a/L)2, because the TPL scheme ivolves
noO(a/L) error. We found that the coupling constant of the TPL scheme exhibits scaling behaviour
even at the small lattice sizes, as shown in Fig.2.

Figure 2: The continuum limit ofg2
TP with s = 1.5. The fit function is a linear function of(a/L)2. The

statistical error bars are of the same size of the symbols.

The TPL running coupling constant in quenched QCD with 24 steps is shown in Fig.3 together
with one- and two-loop perturbative results. The horizontal axis corresponds to the energy scale.
All the results are normalized atL = L0 with g2(L0/L) = 0.65. The nonperturbative running cou-
pling constant is consistent with one- and two-loop perturbative results in the high energy region
(L0/L ≥ 0.1). On the other hand, in the low energy region, the running is slower than one-loop.
This shows the feature of TPL scheme. The TPL running coupling constant inµ = 1/L → 0 limit
goes to 1/k∼ 32, since the boundary effects becomes negligible in this limit. Thus the definition of
eq.(2.5) goes to the constant. This is the reason why the nonperturbative running coupling constant
in this scheme runs slower than the one-loop perturbative result in the low energy region. From this
quenched test, we conclude that we can control both the the statistical and systematic errors of the
TPL coupling constant, and can obtain reasonable result with this scheme. Furthermore we found
the TPL coupling constant in quenched QCD has a robust scaling behaviour even in a small lattice
size, which was also observed in the previous quenched SU(2) calculations [6, 11].

4. Nf = 12case

In this section, we present preliminary results for our nonperturbative running coupling con-
stants. It is consistent with the pertubartive result at high energy.
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Figure 3: The running coupling constants in TPL scheme, one-loop and two-loop.

The simulation parameters are 4.0≤ β ≤ 25.0 with lattice sizesL/a= 4,6,8,10,121. Figure4
shows the global behavior of the ratio of Polyakov loops in eq.(2.5) for each lattice size. This is
also the global behaviour of the TPL coupling constant. Note that the behavior in low-β region is
different from the SF scheme [3], and the TPL coupling shows the trend of reaching a plateau for
each lattice size. The effect of taste breaking for staggered fermions results in significant scheme
dependence in this region.

It is difficult to find a good interpolating function to fit all the data. This is due to the plateau
behaviour in the IR. In this proceedings, we use the 38 data points in the high−β regime, where
the ratios of Polyakov loops are smaller than 0.04, to perform the global fit to the interpolating
function f (x,y) = f (β ,a/L):

f (x,y) =
6k

x+c1log(y)
+

c2 +c3log(y)
(x+c1log(y))2 . (4.1)

Here, we fix the coefficient of the first term to be 6k. This is because the renormalised coupling
constant should be equal to the bare one in the UV (highβ ). From the perturbative analysis at high
energy, we can fixa/L dependence.

We carry out step scaling procedure similar to that in the quenched case. Figure5 shows the
running of our 99 steps starting at the UV pointg2 = 0.298, which corrresponds to the ratio of
Polyakov loop being 0.009487. Perturbative results are also shown in this plot. We find good
agreements with perturbative running in this UV regime. Presently, we are investigating the issue
of finding a good interpolating function to describe theβ -dependence in the IR. This is important

1At the lattice conference, we took the UV starting point of step scaling atg2 = 0.542, a large value. Therefore the
running behavior was not consistent with the perturbative results even at this UV starting point. In this proceedings, we
will report the modified result which has been obtained using a starting point much deeper into the UV regime.
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Figure 4: The ratio of Polyakov loop in eachβ andL/a.

for a detailed study of the IR fixed point. We find that as a function ofβ the value of the running
coupling for fixedL/a = 4,6 stops growing towards smallerβ at aroundβ = 4.5 and deviate from
the larger volume data. This is in contrast to the case of SF scheme where the running couplings
for each L/a continue to grow towards smallerβ and cross with each other aroundβ = 4.5.

The step scaling analysis in the strong coupling region is in progess.
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Figure 5: The TPL running coupling constant in high energy region.
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