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functions as well as the locality of the low-lying eigenmodes of the hermitian Wilson-Dirac op-
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overlap operator and compare them with the random matrix theory.
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1. Introduction

Recently it has been drawing much attention to study non-QCDlattice gauge theories with
general numbers of colors and flavors and with general fermion representations [1]. Main motiva-
tion is a search for possible alternative dynamics to the Higgs sector in the standard model, whose
effect may become manifest in forthcoming LHC experiment. For instance, in the so-called walk-
ing technicolor theories, a slowly running (walking) coupling over wide range of scale plays an
essential role, and gauge theories with a nontrivial infrared fixed point and a conformal window
are regarded as possible candidates with such dynamical property. Lattice simulations now enable
us to study these candidate gauge theories, and to estimate physical quantities to be compared with
current and future precision experimental data.

Our goal of present study is to explore theNc = 2 lattice gauge theories withN f massless Dirac
fermions in fundamental or adjoint representation, and examine the dynamics of spontaneous chiral
symmetry breaking for variousN f . By adopting the overlap-Dirac fermions, which have an exact
chiral symmetry on the lattice, one can simulate the theories in theε-regime and examine possible
chiral symmetry breaking through the low-lying spectrum ofthe overlap-Dirac operator. The re-
lation of chiral phase transition to deconfinement transition in these theories is another interesting
subject to study. These SU(2) gauge theories have an attractive feature that the infrared fixed point
is expected to appear with less number ofN f , compared to largerNc theories.

In using the overlap fermions, one needs to ensure that the overlap-Dirac operator is exponen-
tially local. Since the locality of the overlap operator is closely related to the spectral gap of the
Wilson-Dirac operator with a supercritical mass, we first focus on this issue inNc = 2 case. Namely,
we explore the Aoki phase, where the flavor-parity symmetry is broken spontaneously (in addition
to chiral symmetry), by analyzing the meson correlator and the spectrum of the Wilson-Dirac oper-
ator. We also investigate the spectrum of the overlap operator to compare with the random matrix
theory. All results in this report are obtained in quenched approximation, as a preparation for the
dynamical simulations of overlap fermions.

2. Locality of overlap operator and Aoki phase

The overlap-Dirac operator is represented as

Dov =
M0

a
[1+ γ5sign(HW (−M0))] , (2.1)

whereHW is the hermitian Wilson-Dirac operator with negative mass−M0. If the near-zero eigen-
value spectrum ofHW has a gap, the locality of the overlap operator is ensured [2]. In the case that
the near-zero modes exist, Golterman and Shamir proposed the following conjecture [3, 4].

• There is certain frequency below that the eigenvectors ofHW are exponentially localized.
This frequency is called ‘mobility edge’ after similar phenomena in the disordered system.

• If the near-zero modes ofHW is exponentially local, the overlap operator is also local.

• Aoki phase is characterized with vanishing mobility edge.
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This conjecture is numerically confirmed in Refs. [4]. The locality of the overlap operator is also
verified along this conjecture in Refs. [5]. Thus the locality of the overlap operator is satisfied if
the system is out of the Aoki phase.

The Aoki phase is characterized by parity-flavor symmetry breaking [6]. Let us consider the
N f = 2 QCD case. At zero temperature, the chiral symmetry is spontaneously broken, and three
massless Nambu-Goldstone modes (pions) appear accordingly. For the Wilson-Dirac operator with
negative bare quark mass, Aoki proposed that there may existin theg2-M0 plane a phase in which
one of three pions are condensed. Such a phase has been verified to exist in numerical simulations.
Our first question is whether and where the Aoki phase exists in the case of the SU(2) gauge
theories.

3. Numerical study of Wilson-Dirac operator

In this work we use two ensembles of quenched SU(2) gauge configurations on 83×16 lattice
generated with the Iwasaki gauge action atβ = 0.8 and 1.0. For each ensemble the HMC algo-
rithm is used to generate 500 configurations each separated by 10 trajectories of unit length. The
gauge field is represented by 2×2 link variable acting on the fermion spinors in the fundamental
representation. For the adjoint fermions, the 3×3 link variableUA is obtained as

(UA)ab =
1
2

tr
[

T a
FUT b

FU†
]

(3.1)

whereT a
F is the generator of the fundamental representation.

While there is no direct relation for the SU(2) gauge theory to the real world, just to give
an idea of typical scale of these lattices, we set the latticescale by hadronic radiusr0 determined
from the static quark potential in fundamental representation. By settingr0 = 0.49fm, the lattice
spacings are determined asa = 0.2804(13)fm at β = 0.8 anda = 0.1445(15)fm at β = 1.0.

3.1 Meson correlator

As a probe of the Aoki phase, we first analyze the pion correlator following Ref. [4]. We
introduce the twisted mass term as an external field in the Wilson-Dirac fermion action as

SWtm = ψ̄ [DW − im1τ3γ5]ψ . (3.2)

Then in the Aoki phase, in the limit ofm1 → 0, π3 becomes massive whileπ± remain massless.
Thus we measure the pion correlator in the broken direction,

Γ(x,y) = 〈π+(x)π−(y)〉, π±(x) = iψ̄(x)γ5τ±ψ(x). (3.3)

The extracted pion masses with standard fitting procedure are extrapolated to vanishing twisted
mass. Except for the edges, the region wheremπ vanishes signals the Aoki phase.

Figure 1 shows them1 dependence of the pion mass atβ = 1.0. The left panel corresponds to
the physical region (positive physical quark mass), while the right panel corresponds to the region
in between the Aoki phase. AsM0 is changed, them1-dependence of the pion mass is changed
differently in the left and right panels.
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Figure 1: Them1 dependence of the pion mass with the fundamental fermions atβ = 1.0. The left panel
shows the result forM0 in the physical region, and the right panel forM0 in between the Aoki phase.
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Figure 2: The values of pion mass atm1 = 0 at β = 0.8 (left panel) and 1.0 (right) for the fundamental
fermions.

At eachM0, we linearly extrapolate the values ofmπ(m1)
2 to m1 = 0 using the data at three

lowestm1. The result is plotted in Fig. 2. Atβ = 0.8 (left panel), in the region ofM0 = 1.24–1.35
the pion mass is zero indicating that this region corresponds to the Aoki phase. In the right panel, at
β = 1.0, the region where the pion mass vanishes is very narrow. To examine whether this behavior
depends on the volume, we are now repeating the same analysison a 123×24 lattice.

Figure 3 shows the result of the same analysis applied to the adjoint representation of fermions.
At β = 0.8 (left panel), in the wide range ofM0 > 1.85, the pion mass remains massless. This
indicates that the Aoki phase extends over the whole region of M0 > 1.85. Atβ = 1.0 (right panel),
however, finger-like structure appears.

3.2 Low-lying eigenmodes of HW

In this subsection, we measure another probe of the Aoki phase, the low-lying eigenmodes of
the hermitian Wilson-Dirac operator. In particular, if thelow-lying spectrum has a gap, there is
no possibility of the Aoki phase. Figure 4 shows the near-zero spectral density ofHW at β = 1.0.
The left and right panel show the results atM0 = 0.82 and 0.90, which are according to Fig. 2 very
close to (or inside) the Aoki phase and outside the Aoki phase, respectively. In both cases, near-
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Figure 3: The values of pion mass atm1 = 0 atβ = 0.8 and 1.0 for the adjoint fermions.
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Figure 4: The low-lying spectral density ofHW at β = 1.0 for the fundamental fermions. Left and right
panels show the results atM0 = 0.82 and 0.90, respectively.

zero spectral density is nonzero. This indicate that even outside Aoki phase, the spectral density is
not necessarily to have a gap.

If the near-zero modes ofHW have finite density, the properties of these modes are to be
investigated. According to the conjecture of Golterman andShamir, these modes should localize
outside the Aoki phase, and extend inside. Figure 5 shows thebehavior of the lowest mode on 5
configurations at the same values ofM0 as Fig. 4. These figures are generated as follows; first we
find the sitexmax at which the eigenvectorφλ (x) has the largest value of|φλ (x)|2. Then along the
t-direction,|φλ (x− xmax)|

2 is plotted. Difference between the results atM0 = 0.82 and 0.90 is not
manifest. More detailed analysis and comparison of more manifest cases are needed.

4. Spectrum of overlap operator

To investigate whether the chiral symmetry is broken or not,we determine the near-zero spec-
trum of the overlap-Dirac operator. Such analysis would be powerful tool to determine the chiral
condensate in theε-regime simulations. If the chiral symmetry is broken, the spectrum would
exhibit specific feature as predicted by the random matrix theory (RMT) [10]. In the case of the
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Figure 5: The behavior of the lowest eigenvector ofHW at β = 1.0 for the fundamental fermions. Left and
right panels show the results atM0 = 0.82 and 0.90, respectively.
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Figure 6: The result of the unfolded low-lying spectrum of the overlapoperator. The left panel shows the
distribution of the level spacing. The right panel comparesthe individual level distribution with three kinds
of chiral RMT predictions. Each colored histogram displaysth numerical result of each level. Solid lines
are predictions of RMT for the lowest level. The dotted curverepresents level distribution of ChGSE.

fundamental fermions in the color SU(2) gauge theory, the symmetry breaking pattern is expected
to be SU(2N f )→SO(2N f ), while for the adjoint fermions SU(2N f )→Sp(2N f ) [9].

Figure 6 shows the result atβ = 1.2 for the adjoint representation (M0 = 1.8). Note that the
lattice spacing at thisβ is 0.066(2)fm and thus volume is not sufficiently large. The left panel
shows the distribution of unfolded level spacing. Three curves represent the predictions of RMT
for the chiral Gaussian orthogonal, unitary, and symplectic ensembles. The result agrees with
the symplectic ensemble. The right panel shows the distribution of unfolded eigenvalues. Three
solid curves represent the predictions of RMT. The numerical result of the lowest level seems
to agree with the chiral Gaussian symplectic ensemble (ChGSE). The distribution of the second
lowest level, however, shifts rightward from the expected curve. This may be explained as the
finite volume effect. These behavior indicate that the chiral symmetry is indeed broken with the
expected pattern.

6



P
o
S
(
L
A
T
2
0
0
9
)
0
6
4

Study of Aoki phase in Nc=2 gauge theories with fundamental and adjoint fermions Hideo Matsufuru

5. Conclusion and outlook

As a preparation to the dynamical simulations ofSU(2) gauge theories with the overlap
fermions, we have investigated the properties of the Wilson-Dirac operator on quenched ensem-
bles. The meson correlators and eigenmodes ofHW were analyzed to specify where the Aoki phase
lies. These observables are indeed helpful to verify that the system is sound to use the overlap op-
erator. We also observe the spectrum of the overlap operatorto judge whether the chiral symmetry
is broken or not.

Since the present analysis are still exploratory level, we need to complete them in wider range
of β andM0, as well as on larger lattices. To improve the locality of theoverlap operator, one may
adopt the topology fixing term which explicitly suppresses the near-zero modes ofHW [7, 8]. Fixed
topology simulation in theε-regime is also efficient for comparison with the chiral perturbation
theory and RMT [11]. Since this is our plan in the dynamical overlap simulation, it is important to
extend our analyses to this case.

We have started dynamical simulations with overlap fermions and a study ofN f -dependence
of SU(2) gauge theories. It is also important to investigatethe finite temperature phase transition
of these theories.

Numerical simulations were performed on Hitachi SR11000 and IBM System Blue Gene So-
lution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 09-05). This work was supported in part by the Grant-in-Aid of the
Ministry of Education (Nos. 19740160, 20105001, 20105002,20105005, 21105503, 21540258).
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