PROCEEDINGS

OF SCIENCE

Study of Aoki phase in Nc=2 gauge theories with
fundamental and adjoint fermions

Hideo Matsufuru*
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

E-mail: hi deo. mat suf uru@ek. jp

Yoshio Kikukawa
Ingtitute of Physics, University of Tokyo, Tokyo 153-8092, Japan
E-mail: ki kukawa@epl. c. u-tokyo. ac.jp

Norikazu Yamada

KEK Theory Center, Institute of Particle and Nuclear Sudies, High Energy Accelerator
Research Organization (KEK), Tsukuba 305-0801, Japan,

and School of High Energy Accelerator Science, The Graduate University for Advanced Studies
(Sokendai), Tsukuba 305-0801, Japan

E-mail: nori kazu. yanada@ek. j p

We study the phase structure of tNg= 2 lattice gauge theories with fundamental and adjoint
fermion representations in the supercritical (negativesheegion of the Wilson-Dirac operator.
To examine the location of the Aoki phase, we investigatebtbleaviors of meson correlation
functions as well as the locality of the low-lying eigenmsa the hermitian Wilson-Dirac op-
erator, on quenched and dynamical configurations. We alsereb the level statistics of the
overlap operator and compare them with the random matroryhe

The XXVII International Symposium on Lattice Field Theory
July 26-31, 2009
Peking University, Beijing, China

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Sudy of Aoki phase in Nc=2 gauge theories with fundamental and adjoint fermions Hideo Matsufuru

1. Introduction

Recently it has been drawing much attention to study non-Qelize gauge theories with
general numbers of colors and flavors and with general farmgpresentations [1]. Main motiva-
tion is a search for possible alternative dynamics to theyslggctor in the standard model, whose
effect may become manifest in forthcoming LHC experimemt. iRstance, in the so-called walk-
ing technicolor theories, a slowly running (walking) cangl over wide range of scale plays an
essential role, and gauge theories with a nontrivial iefildixed point and a conformal window
are regarded as possible candidates with such dynamiqgagipyo Lattice simulations now enable
us to study these candidate gauge theories, and to estimgieal quantities to be compared with
current and future precision experimental data.

Our goal of present study is to explore tie= 2 lattice gauge theories witks massless Dirac
fermions in fundamental or adjoint representation, andréma the dynamics of spontaneous chiral
symmetry breaking for variouds. By adopting the overlap-Dirac fermions, which have an exac
chiral symmetry on the lattice, one can simulate the theanghee-regime and examine possible
chiral symmetry breaking through the low-lying spectruntha overlap-Dirac operator. The re-
lation of chiral phase transition to deconfinement traosiin these theories is another interesting
subject to study. These SU(2) gauge theories have an attréeature that the infrared fixed point
is expected to appear with less numbeNef compared to largdX. theories.

In using the overlap fermions, one needs to ensure that #wapvDirac operator is exponen-
tially local. Since the locality of the overlap operator Iesely related to the spectral gap of the
Wilson-Dirac operator with a supercritical mass, we firsuf®on this issue iN; = 2 case. Namely,
we explore the Aoki phase, where the flavor-parity symmesityroken spontaneously (in addition
to chiral symmetry), by analyzing the meson correlator dedspectrum of the Wilson-Dirac oper-
ator. We also investigate the spectrum of the overlap opetatcompare with the random matrix
theory. All results in this report are obtained in quenchpgdraximation, as a preparation for the
dynamical simulations of overlap fermions.

2. Locality of overlap operator and Aoki phase

The overlap-Dirac operator is represented as

Doy = 2 [1-+ yssignt Hur(~Mo))] 1)

whereHyy is the hermitian Wilson-Dirac operator with negative mas4y. If the near-zero eigen-
value spectrum ofly has a gap, the locality of the overlap operator is ensuredrizhe case that
the near-zero modes exist, Golterman and Shamir proposddltbwing conjecture [3, 4].

e There is certain frequency below that the eigenvectorshgfare exponentially localized.
This frequency is called ‘mobility edge’ after similar ptoenena in the disordered system.

¢ If the near-zero modes éfyy is exponentially local, the overlap operator is also local.

e Aoki phase is characterized with vanishing mobility edge.
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This conjecture is numerically confirmed in Refs. [4]. Thedlity of the overlap operator is also
verified along this conjecture in Refs. [5]. Thus the logatif the overlap operator is satisfied if
the system is out of the Aoki phase.

The Aoki phase is characterized by parity-flavor symmetsaking [6]. Let us consider the
Nt = 2 QCD case. At zero temperature, the chiral symmetry is spp@ously broken, and three
massless Nambu-Goldstone modes (pions) appear accgrdiuglthe Wilson-Dirac operator with
negative bare quark mass, Aoki proposed that there mayiaxise g°>-Mg plane a phase in which
one of three pions are condensed. Such a phase has beemteréigst in numerical simulations.
Our first question is whether and where the Aoki phase existhe case of the SU(2) gauge
theories.

3. Numerical study of Wilson-Dirac oper ator

In this work we use two ensembles of quenched SU(2) gaugegtwafions on 8x 16 lattice
generated with the Iwasaki gauge actiorBat 0.8 and 10. For each ensemble the HMC algo-
rithm is used to generate 500 configurations each separgt#@ trajectories of unit length. The
gauge field is represented by2 link variable acting on the fermion spinors in the fundataktn
representation. For the adjoint fermions, the 3link variableU, is obtained as

(Up)® = %tr [TFaU TPU T] (3.1)

whereT2 is the generator of the fundamental representation.

While there is no direct relation for the SU(2) gauge thearythte real world, just to give
an idea of typical scale of these lattices, we set the lastiede by hadronic radiug determined
from the static quark potential in fundamental repres@natBy settingro = 0.49fm, the lattice
spacings are determined @s- 0.280413)fm at 3 = 0.8 anda = 0.144515)fm at3 = 1.0.

3.1 Meson correlator

As a probe of the Aoki phase, we first analyze the pion cowelftllowing Ref. [4]. We
introduce the twisted mass term as an external field in thediiDirac fermion action as

Swtm = P[Dw — im T3] Y. (3.2)

Then in the Aoki phase, in the limit ofy, — 0, 75 becomes massive whilg. remain massless.
Thus we measure the pion correlator in the broken direction,

Fxy) =(mm(y),  m(x)=igX)pr@x). (3.3)

The extracted pion masses with standard fitting procedwessdrapolated to vanishing twisted
mass. Except for the edges, the region whmgaranishes signals the Aoki phase.

Figure 1 shows they dependence of the pion massBat 1.0. The left panel corresponds to
the physical region (positive physical quark mass), whikeright panel corresponds to the region
in between the Aoki phase. A4y is changed, then;-dependence of the pion mass is changed
differently in the left and right panels.
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Figure 1: Themy dependence of the pion mass with the fundamental fermiofis=af..0. The left panel
shows the result fo¥g in the physical region, and the right panel fdg in between the Aoki phase.
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Figure 2: The values of pion mass at; = 0 at 8 = 0.8 (left panel) and 1.0 (right) for the fundamental
fermions.

At eachMy, we linearly extrapolate the values wé;(m; )? to m; = 0 using the data at three
lowestm;. The result is plotted in Fig. 2. A& = 0.8 (left panel), in the region dflp = 1.24-1.35
the pion mass is zero indicating that this region correspoathe Aoki phase. In the right panel, at
B = 1.0, the region where the pion mass vanishes is very narronxdmi@e whether this behavior
depends on the volume, we are now repeating the same aratysis2 x 24 lattice.

Figure 3 shows the result of the same analysis applied tadjomarepresentation of fermions.
At B = 0.8 (left panel), in the wide range ®flp > 1.85, the pion mass remains massless. This
indicates that the Aoki phase extends over the whole redidfyo- 1.85. At3 = 1.0 (right panel),
however, finger-like structure appears.

3.2 Low-lying eigenmodes of Hyy

In this subsection, we measure another probe of the Aokigytths low-lying eigenmodes of
the hermitian Wilson-Dirac operator. In particular, if tlosv-lying spectrum has a gap, there is
no possibility of the Aoki phase. Figure 4 shows the neao-apectral density dfly at 8 = 1.0.
The left and right panel show the resultdvg = 0.82 and 0.90, which are according to Fig. 2 very
close to (or inside) the Aoki phase and outside the Aoki pheespectively. In both cases, near-
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Figure 3: The values of pion mass a = 0 at3 = 0.8 and 1.0 for the adjoint fermions.
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Figure 4: The low-lying spectral density dfiy at 8 = 1.0 for the fundamental fermions. Left and right
panels show the resultslsly = 0.82 and 0.90, respectively.

zero spectral density is nonzero. This indicate that evésidriAoki phase, the spectral density is
not necessarily to have a gap.

If the near-zero modes dfly have finite density, the properties of these modes are to be
investigated. According to the conjecture of Golterman 8hdmir, these modes should localize
outside the Aoki phase, and extend inside. Figure 5 showbehavior of the lowest mode on 5
configurations at the same valuesMf as Fig. 4. These figures are generated as follows; first we
find the sitexyax at which the eigenvectap, (x) has the largest value ¢ (x)|°. Then along the
t-direction, | @, (X — Xmex) |2 is plotted. Difference between the resultdvia= 0.82 and 0.90 is not
manifest. More detailed analysis and comparison of morafesircases are needed.

4. Spectrum of overlap operator

To investigate whether the chiral symmetry is broken or wetdetermine the near-zero spec-
trum of the overlap-Dirac operator. Such analysis would ®&gsful tool to determine the chiral
condensate in the-regime simulations. If the chiral symmetry is broken, tipectrum would
exhibit specific feature as predicted by the random matomp (RMT) [10]. In the case of the
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Figure5: The behavior of the lowest eigenvectortdf; at 8 = 1.0 for the fundamental fermions. Left and
right panels show the resultsidy = 0.82 and 0.90, respectively.
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Figure 6: The result of the unfolded low-lying spectrum of the oventggerator. The left panel shows the
distribution of the level spacing. The right panel compahesindividual level distribution with three kinds
of chiral RMT predictions. Each colored histogram displ#ty:iumerical result of each level. Solid lines
are predictions of RMT for the lowest level. The dotted cugresents level distribution of ChGSE.

fundamental fermions in the color SU(2) gauge theory, tmersgtry breaking pattern is expected
to be SU(A;)—SO(2A\¢), while for the adjoint fermions SU{®)—Sp(2N¢) [9].

Figure 6 shows the result 8t= 1.2 for the adjoint representatioM( = 1.8). Note that the
lattice spacing at thig is 0.066(2)fm and thus volume is not sufficiently large. Te# panel
shows the distribution of unfolded level spacing. Threevesmrepresent the predictions of RMT
for the chiral Gaussian orthogonal, unitary, and sympieetisembles. The result agrees with
the symplectic ensemble. The right panel shows the disimibwof unfolded eigenvalues. Three
solid curves represent the predictions of RMT. The numenesult of the lowest level seems
to agree with the chiral Gaussian symplectic ensemble (E)GEhe distribution of the second
lowest level, however, shifts rightward from the expectedve. This may be explained as the
finite volume effect. These behavior indicate that the thlyanmetry is indeed broken with the
expected pattern.
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5. Conclusion and outlook

As a preparation to the dynamical simulations Sf(2) gauge theories with the overlap
fermions, we have investigated the properties of the WiBoac operator on quenched ensem-
bles. The meson correlators and eigenmodeés$pfvere analyzed to specify where the Aoki phase
lies. These observables are indeed helpful to verify thastistem is sound to use the overlap op-
erator. We also observe the spectrum of the overlap opdmpodge whether the chiral symmetry
is broken or not.

Since the present analysis are still exploratory level, aedrito complete them in wider range
of B andMy, as well as on larger lattices. To improve the locality of therlap operator, one may
adopt the topology fixing term which explicitly suppresdeshear-zero modes by [7, 8]. Fixed
topology simulation in thes-regime is also efficient for comparison with the chiral pdration
theory and RMT [11]. Since this is our plan in the dynamicadrtap simulation, it is important to
extend our analyses to this case.

We have started dynamical simulations with overlap fermiand a study oN;-dependence
of SU(2) gauge theories. It is also important to investightefinite temperature phase transition
of these theories.

Numerical simulations were performed on Hitachi SR11000 [&M System Blue Gene So-
lution at High Energy Accelerator Research OrganizatioBKKunder a support of its Large Scale
Simulation Program (No. 09-05). This work was supported art py the Grant-in-Aid of the
Ministry of Education (Nos. 19740160, 20105001, 20105@0,05005, 21105503, 21540258).
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