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The electroweak gauge symmetry is allowed to be spontaneously broken by the strongly interact-
ing vector-like gauge dynamics. When the gauge coupling of a theory runs slowly in a wide range
of energy scale, the theory is extremely interesting. This may open up the possibility that the
origin of all masses may be traced back to the gauge theory. We use the Schrödinger functional
method to determine the scale dependence of the gauge coupling of 10-flavor QCD. Preliminary
results are reported.
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1. Introduction

The main goal of Large Hadron Collider (LHC) is to confirm the Higgs mechanism and to
find particle contents and the physics low above the electroweak scale. So far many new physics
models beyond the standard model have been proposed. Among them, Technicolor (TC) [1] is
one of the most attractive candidates [2] as it does not require elementary scalar particles which
cause, so-called, the fine-tuning problem. This model is basically a QCD-like, strongly interacting
vector-like gauge theory. Therefore, lattice gauge theory provides the best way to study this class
of model[3], and the predictions can be as precise as those for QCD, in principle.

The simple, QCD-like TC model, i.e. an SU(3) gauge theory with two or three flavors of
techniquarks, has been already ruled out by, for instance, the S-parmeter[4] and the FCNC con-
straints. However, it has been argued that, if the gauge coupling runs very slowly (“walks”) in
a wide range of energy scale before spontaneous chiral symmetry breaking occurs, at least, the
FCNC problem may disappear[5]. Such TC models are called walking technicolor (WTC) and
several explicit candidates are discussed in semi-quantitative manner in [6]. Since the dynamics in
WTC might be completely different from that in QCD and hence the use of the naive scaling in
Nc or N f to estimate various quantities may not work, the S-parameter must be evaluated from the
first principles [7]. Although really important quantity is the anomalous dimension of ψ̄ψ opera-
tor, to find theories showing the walking behavior is a good starting point. Recently many groups
started quantitative studies using lattice technique to answer the question what gauge theory shows
walking behavior. In [8], the running couplings of 8- and 12-flavor QCD are studied on the lattice
using the Schrödinger functional (SF) scheme[9]. Their conclusion is that while 8-flavor QCD
does not show walking behavior 12-flavor QCD reaches an infrared fixed point (IRFP) at g2

IR ∼ 5.
In spite of the scheme-dependence of running and its value of IRFP, the speculation inferred from
Schwinger-Dyson equation [10] suggests that g2

IR ∼ 5 is too small to trigger spontaneous chiral
symmetry breaking. Although 12-flavor QCD is still an attractive candidate and is open to de-
bate [11], we explore other N f . In the following, we report the preliminary results on the study
of the running coupling in 10-flavor QCD. Since the lattice conference, statistics is increased by
much. The following analysis is based on the increased statistics.

2. Perturbative analysis

Before going into the simulation details, let us discuss some results from perturbative analysis.
In this work, we adopt the β function defined by

β (g2(L)) = L
∂ g2(L)

∂L
= b1 g4(L)+b2 g6(L)+b3 g8(L)+b4 g10(L)+ · · · , (2.1)

where L denotes a length scale. The first two coefficients are scheme independent, and given by

b1 =
2

(4π)2

[
11− 2

3
N f

]
, b2 =

2
(4π)4

[
102− 38

3
N f

]
. (2.2)

The higher order coefficients are scheme-dependent and are known only in the limited schemes. In
this section, we analyze the perturbative running in the following four different schemes/approximations:
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Figure 1: L-dependence of g2(L) in different approximations or schemes. N f dependence is also shown.

i) two-loop (universal), ii) three-loop in the MS scheme, iii) four-loop in the MS scheme, iv) three-
loop in the Schrödinger functional scheme. The perturbative coefficients relevant to the following
analysis are

bMS
3 =

2
(4π)6

[
2857

2
− 5033

18
N f +

325
54

N2
f

]
, (2.3)

bMS
4 =

2
(4π)8

[
29243.0−6946.30N f +405.089N2

f +1.49931N3
f
]
, (2.4)

bSF
3 = bMS

3 +
b2 cθ

2
2π

−
b1 (cθ

3 − cθ
2

2)
8π2 , (2.5)

where the coefficients cθ
2 and cθ

3 depend on the spatial boundary condition of the SF used in calcu-
lations, i.e θ . Those for θ = π/5 and cθ

2 for θ = 0 are known as

cπ/5
2 = 1.25563+0.039863×N f , (2.6)

cπ/5
3 = (cπ/5

2 )2 +1.197(10)+0.140(6)×N f −0.0330(2)×N2
f , (2.7)

c0
2 = 1.25563+0.022504×N f , (2.8)

but c0
3 is not. Therefore, the case iv) is studied with θ=π/5. It should be noted that in our numerical

simulation θ=0 and thus, rigorously speaking, the example iv) is not applied to our numerical result.

3



P
o
S
(
L
A
T
2
0
0
9
)
0
6
6

Study of the running coupling constant in 10-flavor QCD with the SF method N. Yamada

N f 4 6 8 10 12 14 16
2-loop universal 27.74 9.47 3.49 0.52

3-loop SF 43.36 23.75 15.52 9.45 5.18 2.43 0.47
3-loop MS 159.92 18.40 9.60 5.46 2.70 0.50
4-loop MS 19.47 10.24 5.91 2.81 0.50

Table 1: The IRFP from perturbative analysis.

Fig. 1 shows L-dependence of g2(L) in the four different schemes/approximations, i)-iv),
with the initial condition g2(L0) = 1.6. The values of perturbative infrared fixed point (IRFP)
are summarized in Tab. 1. As seen from Tab. 1, once one goes beyond the two-loop approxi-
mation, the fixed point value of 12-flavor QCD is stable at around g2

IR ∼ 5 against the change
of schemes/approximations. It is interesting that this IRFP is completely consistent with that
obtained in the non-pertrurbative calculation by [8]. Now looking at the perturbative IRFP at
N f = 10, the similar stability is seen at g2 ∼ 10. Furthermore, according to an analysis based on
the Shwinger-Dyson equation, there is an argument that chiral symmetry breaking occurs at around
g2 ∼ 4π2/(3C2(R)) = π2 [10]. In summary, the perturbative analysis suggests that 10-flavor QCD
is the most attractive candidate for WTC.

3. Simulation details

We employ the Schrödinger functional method [9] to determine the running coupling constant.
Unimproved Wilson fermion action and the plaquette gauge action without any boundary counter
terms are adopted to describe regularized dynamics of techniquarks and technigluons, respectively.
The parameter of the spatial boundary condition for fermions, θ , is set to 0. To determine the scale
dependence, calculations on several different lattice sizes are required. In this analysis, we report
the results obtained with (L/a)4 = 44, 64, 84 and 124 lattices. The calculation on 164 lattice is in
progress. The bare gauge coupling β = 6/g2

0 is explored in the range of 4.4–24.0. At around β ∼
4.4, we encounter a bulk phase transition, where the plaquette value suddenly jumps to a smaller
value. Whenever this happens, we discard the configuration. The numerical simulation is carried
out on several architectures including GPGPU and PC cluster. The standard HMC algorithm is used
with some improvements in the solver part. Since the Wilson type fermion explicitly violates chiral
symmetry, the critical value of κ has to be tuned to the massless limit. We performed this tuning
for every pair of (β , L/a). So far, we have accumulated 5,000 to 200,000 trajectories depending
on (β , L/a).

The procedure to determine the running is standard and consists of the following steps.
1. Calculate the Schrödinger functional scheme coupling at various g2

0’s on several L/a’s, which
is denoted by g2

L/a(g
2
0).

2. Fit g2
L/a(g

2
0) at each L/a as a function of g2

0 to obtain an interpolating formula g2,fit
L/a(g

2
0).

3. Set the input value u0, which implicitly sets an initial length scale L0.
4. Choose one L/a and determine g2,∗

0 satisfying g2,fit
L/a(g

2,∗
0 ) = u0.

5. Choose one L′/a = sL/a (typically s =2 or 3/2) and read the value of g2,fit
sL/a(g

2,∗
0 ), which is

stored in Σ(sL0/a, L0/a).
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Figure 2: g2
0-dependence of g2

0/g2(L) for L/a = 4, 6, 8, 12. The right panel is just an enlargement of the
left.

6. Make a perturbative correction via Σ(sL0/a, L0/a) = g2,fit
sL/a/[1+δ (a/sL0, a/L0)×u] with the

known coefficient δ .
7. Repeat 4-6 with different a, i.e. for L/a′ and L′/a′ = sL/a′.
8. Take the continuum limit by using Σ(sL0/a, L0/a) and Σ(sL0/a′, L0/a′) to obtain σ(sL0).
9. Set u1 = σ(sL0)

10. Repeat 4-9 several times with the initial value u1, u2, · · ·. Then we obtain a series of
σ(sL0), σ(s2L0), σ(s3L0), · · ·. This scale dependence describes the running of the cou-
pling.

4. Results

L/a N χ2/dof aL/a,1 aL/a,2 aL/a,3 aL/a,4

4 2 45.6(2.2) 0.4903( 0.0006) -0.4677( 0.0025)
4 3 11.0(1.1) 0.5003( 0.0034) -0.3909( 0.0354) -0.1038( 0.0435)
4 4 2.2(0.5) 0.5080( 0.0008) -0.4746( 0.0094) 0.1168( 0.0232) -0.1486( 0.0148)
6 2 19.5(1.6) 0.4607( 0.0016) -0.3826( 0.0038)
6 3 4.3(0.8) 0.4888( 0.0015) -0.2662( 0.0085) -0.1856( 0.0115)
6 4 2.1(0.6) 0.5028( 0.0026) -0.4675( 0.0422) 0.2486( 0.0894) -0.2593( 0.0516)
8 2 12.4(1.5) 0.4822( 0.0018) -0.4004( 0.0069)
8 3 1.9(0.6) 0.5088( 0.0021) -0.2135( 0.0192) -0.2668( 0.0239)
8 4 0.7(0.4) 0.5153( 0.0020) -0.3610( 0.0515) 0.0709( 0.1108) -0.1972( 0.0605)

12 2 9.7(1.9) 0.4821( 0.0047) -0.3870( 0.0162)
12 3 2.7(1.0) 0.5164( 0.0040) -0.1716( 0.0316) -0.3104( 0.0363)
12 4 1.5(0.8) 0.5269( 0.0033) -0.3959( 0.0740) 0.2611( 0.1728) -0.3495( 0.1003)

Table 2: The coefficients determined in the fit.

Fig. 2 essentially shows the Schrödinger functional coupling obtained on the four lattices and
their fit curves. Notice that, instead of g2

L/a, we deal with 1/g2
L/a just for convenience. As an
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Figure 3: Running of Schrödinger functional coupling.

interpolating function, we chose

g2
0

g2,fit
L/a(g

2
0)

=
1−aL/a,1 g4

0

1+ p1,L/a ×g2
0 +∑N

n=2 aL/a,n ×g2n
0

, (4.1)

where p1,L/a is the L/a-dependent, one-loop coefficient, the values of which for various L/a are

p1,L/a =


0.4225003137 for L/a = 4
0.4477107831 for L/a = 6
0.4624813408 for L/a = 8
0.4756888260 for L/a = 12

. (4.2)

We optimize the degree of polynomial in the denominator of (4.1), N, by monitoring χ2/dof. The
results of the fits are tabulated in Tabs. 2. From the χ2/dof values, N=4 is chosen in all the cases.

Setting the initial value of the running u0 to 3.0, we calculated the running through the proce-
dure explained above. Since we did not implement any O(a) improvements, large scaling violation
is expected. This can be improved only by performing simulations at larger lattices. We tried to
evaluate the size of the scaling violation, but it fails because of the large statistical error. Thus,
in this report, instead of the continuum limit, the step scaling function constructed from the data
on L/a=8 and 12 lattices is taken as the current estimate. A subtlety occurs in the perturbative
correction, c.f. the step 6 in the procedure. While in the weak coupling region σ(L) ≤ 2 it works,
in the other region the correction turns out to enhance the scaling violation. This happens when
the direction of the scaling violation at the one-loop level is opposite to that of the real violation.
Thus, we calculate the running coupling with and without the perturbative correction and interpret
the difference as the potential systematic uncertainty associated with the scaling violation. Fig. 3
shows the result thus obtained. The perturbative predictions with θ = π/5 is also shown for a
reference. Although the statistical error is still large, an interesting observation is that the data
without the perturbative correction almost goes along the 3-loop curves and at g2

SF ∼ 10 turns to
rapid increase.
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5. Summary and Outlook

The running coupling constant of 10-flavor QCD is studied. The perturbative analysis suggests
that this theory is extremely interesting. The preliminary result obtained without continuum limit
shows an interesting behavior. In order to draw definite conclusions, we clearly need larger lattices
and more statistics. The calculation is in progress.

Numerical simulations are performed on Hitachi SR11000 at High Energy Accelerator Re-
search Organization (KEK) under a support of its Large Scale Simulation Program (No. 09-05),
on GCOE (Quest for Fundamental Principles in the Universe) cluster system at Nagoya University
and on the INSAM (Institute for Numerical Simulations and Applied Mathematics) GPU cluster at
Hiroshima University. This work is supported in part by the Grant-in-Aid for Scientific Research
of the Japanese Ministry of Education, Culture, Sports, Science and Technology (Nos. 20105001,
20105002, 20105005, 21684013, 20540261 and 20740139), and by US DOE grant #DE-FG02-
92ER40699.
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