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1. Introduction

The understanding of the realization of symmetries in QCD from first prirgipbes been
an important issue for a long time. During the 80’s, Vafa and Witten gavensgts against
spontaneous breaking of parify [1] and vector-like global symmetem[2éctor-like theories;
however, these arguments were not as useful as expected. Soreeafteathe publication of
[[], many articles appearefl] [3] calling into question the validity of the papee for a recent
review [4]). The fact that the issue is still open twenty years after thdigation of the first
paper is an indicative of the complexity of the subject. Regarding the squaet [B], it must
be remarked that the result is not applicable neither to the Ginsparg-Weésatarizatior nor to
one of the most used fermionic regularizations on the lattice for QCD, i.e., Wigamions. In
that case, and as it was shown by AdKi[[B, 6], there exists a regioreqfdrameters where parity
and flavour symmetries are spontaneously broken, for the conditiong &afla-Witten theorem
are not fulfilled in the Wilson regularization. In the end, a theoretical pabdhe realization of
symmetries of QCD is still lacking.

This is where the p.d.f. formalism can help. The p.d.f. formalism is a powerdlto analyze
the symmetries of a theory, widely used in statistical mechanics, and introdumed ten years
ago in quantum field theories for Grassmann degrees of freedom witass[ff]. In this paper, we
apply the p.d.f. formalism to different regularizations of lattice QCD. Thd megtion is devoted
to a brief introduction to the p.d.f. formalism. In the second section, we antigz&oki phase, to
find either the existence of a new phase, or a infinite set of sum-rulesgthavalues of the Wilson-
Dirac operator must comply with. The third section applies the same formalisnotoearsystem;
we successfully find, by means of the p.d.f., rigorous proof of parity\eator-like symmetries
conservation in the Ginsparg-Wilson regularization of lattice QCD at nom-zess. The last
section summarizes our conclusions

2. The p.d.f. formalism

The usual way to study spontaneous symmetry breaking on the lattice cim#figt$ollowing
procedure: An external source, which breaks the analyzed symmailigitty, is added. This
generates a non-zero expectation value of the order parameter faythatetry. Then we take,
in this order, first the thermodynamic limit, and finally, the zero external solimat. If the order
parameter expectation value is non-zero after these two limits, then the symnsgtontaneously
broken. Although very popular, the method requires extrapolations to He.nvoreover, in some
systems, the external source method can not be applied in lattice simulatiottse fymmetry
breaking term may add a potentially problematic sign problem. This is the case dighark
condensate in two colours QCI| [8]. It would be desirable to be able to ghelyate of the
symmetries without having to add an external source.

The p.d.f. formalism enables us to do so. It simply amounts to compute the followangity

1The paperlﬂZ] states that vector symmetries are conserved in vecdhgbries, if one is able to find an upper
bound for the propagator. The papEr [2] fails to prove this bound B&imsparg-Wilson regularization, as hermiticity
of the Dirac operator is used during the proof.
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P(c) :J@m<5 <$Zﬁ(x)—c>>, (2.1)

with &'(x) the order parameter to be studied. In our case, this is a fermionic bilea®©y(x),
whereO is a constant matrix. To obtain some computable quantity, we prefer to work veith th
Fourier transform of{(2} 1)

P(q) = / dcé°P(c) = Vnan% / U] dydie SoeP(6+08)v _

o B iq\ . /de(a+0W)
Janwz/[dU}dwdw det<A+OV> _J@m<cl€[A ’

whereA is the Dirac operator, an§s is the pure gauge action. The expectation values of the
fermionic bilinear can be computed frofih (2) easily, taking derivative’®(qf atq = 0,

(2.2)

n
d dz(nq) _ / dc(ic)"e®P(c)
Thus, the moments of the Fourier transform of the distribution function aextectation values of
the powers of the observables. For a broken symmetry, the expectdtierofshe order parameter
(c) will be zero, for a broken symmetry gives rise to symmetric vacua, and fiectation values
of the order parameter in those vacua cancel each other. Then, thestimgrobservables to find
broken symmetries arg") with n even.

=i, (2.3)
g=0

q=0

3. TheWilson scenario

Let's apply this machinery to QCD with two degenerated flavours of Wilsomiters [9].
In this scenario, there exists a phase -the Aoki phase- where paritjaandr are spontaneously
broken, and this translates into a non-zero value of the fermionic biligegrsy. Surprisingly,
the expectation value of the bilineapysy is equal to zero; this phenomenon was explained in
(B, [L9], and a brief hint will be given here: There i&)J&1) remnant of the originaBU (2) flavour
symmetry, which combines with the original parity opera®aio yield zero expectation value of
igysy. In other words: We can find a redefinition of parity (a combination of panitgt U(1))
which remains unbroken. This is the standard picture of the Aoki phase.

Now we compute these two fermionic bilinears using the p.d.f. formalism:

2
wnligd) AGw)) e

(1 tsp)) = 2<V12 ;Aljz> (32)

whereA; the eigenvalues of thgA operator at zero external source. The expres$ioh (3.1) can be
easily generalized to any number of flavours.

We must remark that the p.d.f. can not predict what values will the expres{8.]1) and[(3]2)
take. These depend on the specific properties of the eigenvalues diotbenadiscretization of the
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Dirac operator. In fact, as we will see later, the results change dramafwathe Ginsparg-Wilson
regularization, even though the expressidng (3.1) BnH (3.2) remainnttee sa
For ) to be zero, as the current picture of the Aoki phase demtiredfgllowing cancella-

tion must happen
1 1 11 ?
(3 -((v34) ) .

as we know that the left hand side of the equation must be non-zero, tog f (3.2). This
relationship among the eigenvalues of tg& operator is non-trivial; in fact, for every even moment
of the distribution function we obtain a different sum-rule, by enfordifigysy)>") = 0.

From this point on, we face two different possibilities:

1. The standard picture of the Aoki phase is right, and these sum-rulasbedslfilled by
the eigenvalues oiA. In fact, the p.d.f. can be used to derive easily the sum-rules, which
remind to those obtained by Leutwyler and Smilga in the continuurh |n [11]. Tlifg pas
exposed by S. Sharpe ih [12].

2. The current understanding of the Aoki phase is incomplete, foriihs@émprobable that the
eigenvalues ofsA comply with <(il,l7y5L,U)2n> = 0 for any value ofn. So there must exist
a new phase which verifie§i@iys)®") # 0 for some value oh. As xPT predicts the
standard picture for the Aoki phase, the realization of this case would imgaly B is, in
some sense, incomplete. An analysis of this point of view was doé in [9].

At this moment, there is no theoretical proof to decide between one of this &lipatons. In order
to distinguish which one occurs, a dynamical fermion simulation in the Aokiglsasandatory,
measuring the eigenvalues of th#\ operator, and computing the sum-rules.

4. The Ginsparg-Wilson scenario

As we have seen, the original Vafa and Witten theorems fail, due to the ecéstéaxceptional
configurations, in the later scenario, which, on the other hand, is ofmanat importance in lattice
QCD. So, is there any way we can say something concrete about QCD syewelthe answer is
yes, but we need to choose a ‘small eigenvalue free’ regularizatidvapfiens that the Ginsparg-
Wilsor? fermions fulfill this requirement; the p.d.f. will do the rest. B

We denote byD the Ginsparg-Wilson operator; as we know, its eigenvaljesre complex,
and lie in a circumference of radit%in the complex plane, whose center is in the real axis, at
the point%. Using the standard properties of the Ginsparg-Wilson operator, wearapute the
eigenvalues of the hermitian operagfD + m), which are

— _
e /(2 4-am) [P+ P AR @)
+ and/or — (Aj+m) AjeR

2Strictly speaking, we will work with a Dirac operator which satisfi8~1, ys} = ays, whereas the Ginsparg-
Wilson regularization only require@)*{ yg} = aRys, with Ra local operator. Nevertheless, the results can be applied
to any version of Ginsparg-Wilson fermions, although the calculationseweagtually become harder.
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since When?Tj ¢ R, the eigenvalues associatedTl;cand)Tj* are paired+), but if )Tj € R, this needn’t
be he case, giving rise to zero modes, and non-vanishing topologa@echAs an interesting and
useful remark, we see that thes are real, and non-zero for a non-vanishing massf we look
at the expressior (4.1), we can see that the modulus of these eigerisahoesmded from below
by m (this was remarked i [13]). So we establish tlﬂ%{ < L, which in turn implies that, for a

non-zero mass, the following expectation valigezero in the thermodynamic limit

(1@ysTay)?) <\/zz 2 > VZ:;Z Vo O. (4.2)
J

The summatory is removed, adding a factor equal to the number of eigesnZie This result
states thathere is no Aoki phase in lattice QCD with Ginsparg-WlIson fermions. But we do not
know yet whether the Lagrangian symmetries are spontaneously brokemn. d_et’s look at the
next order parameter

sl () e

The first term of the r.h.s. is just equal fo {4.2), so it must vanish in the trlgmamic limit. The
second term is minus the square of a real quantity, then it must be negata®oThe requirement
(which we will assume) thatysy be an hermitian operator sets to zero this second term in the
thermodynamic limit, for the expectation value of the square of an hermitian toperast be

positive, thence
11 ?
m{(e3a) )=

As both terms in the r.h.s. off (4.3) go to zero as the volume increases, thisghat parity is not
spontaneously broken in lattice QCD with two flavours of Ginsparg-Wilsomiteng, at least for

one of the more standard order parameters. In fact, we know that ttiste @& index theorem for
Ginsparg-Wilson fermiond [14], thus we can relate the zero mod@stofthe topological charge

density,
<<$2“11>2>:<<r§/>2> <2+2am>2:_\/xr;2 <2+2m)2- (4.5)

Taking into account(4.4), we deduce that the topological charge defisitipution function must
be a Dirac delta centered in the origin.

Since we proved that both terms in the r.h.s.[of| (4.3) must vanish indepniethe thermo-
dynamic limit, this result also applies to a single flavoured condensate

3If the expressionle.Z) anm.Z), EB.l) alﬁl (4.3) are coeghane will notice that they are identical, even
though they correspont to different lattice regularizations. Theseesgjams are regularization independent (Elae (2)).
But the specific properties of the eigenvalues do depend on the regtitamizand make the Wilson and Ginsparg-Wilson
fermions behave in different ways.

4The result can be extended to any number of flavours with not muatt.eff
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2
(1 oy = <V12;uljz>—<<§;;> > (46)

and, by extension, to any linear combination of the single-flavoured osatkesp; ysy;.

As far as flavour symmetry is concerned, we have proved t(iaﬁygrgw)z vanish in the
infinite volume limit, but this is not enough, as this expectation value is forced tetmebecause
of parity conservation. Thus, we would like to investigate the quantity

()| )

\% <Z : - 2> < V2rj12 Ve 0. (4.7)
] “Re()\ ) +m| +||T|2(Aj)i|

Thus we can affirm that neither parity nor flavour are spontaneouskehrin this regularization.
At zero mass, we cannot establish an upper bound for the observables the argument is not
valid anymore. The fundamental question is: Why can we bound fromeath@/value of these
obervables at non-zero fermion mass?. The answer is related to atprofde Ginsparg-Wilson
operator, that is{D*l, yg} = aRy®, with R alocal operator. We can write a similar equation for
Wilson fermions, wher® is anon-local operator, but in the case of Ginsparg-Wilson fermions, the
locality of R make the eigenvectors &f look like chiral solutions at long distances. So, no quasi-
chiral, exceptional configurations, at non-zero mass, are allowedidkiephase is completely
forbidden, and therefore, the symmetries are respected.

Other interesting results are straightforward from this point on. For instame can relate
the transverse suceptibility, the topological susceptibility and the chiralecwade. First of all, we
compute the transverse susceptibility,

Xs =V {(iByy)*) = <VZ > o <2+2am>2. (4.8)

Now we write the first summand of the r.h.s. in terms of the chiral condensataaking use of
detA = detysA:

2

()| = 75

(Yy) = <$ddlndet(D+m) > —5<ZEJ;>+O(a)+O(ma2), (4.9)
sSo we arrive at
_(Qy) | Ay
X5 = - +W’ (4.10)

where we have dropped the fac(toTm)2 assuming that we are close to the continuum limit. This
relationship is not new at all, what we are showing here is simply a way teedériThe interesting
conclusion comes taking the vanishing mass limit- 0. Then, as theg is not a Goldstone boson,
Xs must remain finite, so
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(@) 0 f2nt. (4.12)

lim mys =0= lim xt =
m—0 m—0

5. Final remarks

The p.d.f. formalism can be used to cast some light on the old aim of undgirgjdahe realiza-
tion of symmetries of QCD from first principles. Applying the p.d.f. to the Wilsegularization,
we can explore certain, somewhat overlooked, properties of the Awdge In fact, the p.d.f.
states that, either the fermionic bilingabysy can take non-zero values in the Aoki phase, ex-
tending thus the current picture of the phase diagram, or there existsrateitdiver of sum-rules
the eigenvalues of the Dirac-Wilson operator must comply with. So far, rovetieal argument is
strong enough to prove one of these scenarios to be right, thus a dyhtema@an simulation is
mandatory at this point.

But the most interesting conclusions appear when we apply the p.d.f. fomrtalthe Ginsparg-
Wilson regularization. There, we see how parity and vector-like symmetriesheuealized for a
non-vanishing fermion mass. This is a major result that overcomes the Hiéciound by [IL[P].

Acknowledgments

This work has been partially supported by an INFN-MEC collaboration YJ1(@rant FPA2006-
02315) and DGIID-DGA (grant2007-E24/2). E. Follana is supported/linisterio de Ciencia e
Innovacion through the Ramon y Cajal program.

References

[1] C. Vafa and E. WittenPhys. Rev. Lett. 53, (1984) 535.
[2] C. Vafa and E. WittenNucl. Phys. B 234, (1984) 173.

[3] V. Azcoiti and A. GalantePhys. Rev. Lett. 83, (1999) 1518; X. JiPhys. Lett. B 554, (2003) 33; P. R.
Cromptom,Phys. Rev. D 72, (2005) 076003.

[4] V. Azcaoiti, G. di Carlo and A. Vaquerq]HEP 0804, (2008) 035 &r Xi v: 0804. 1338].
[5] S. Aoki, Phys. Rev. D 30, (1984) 2653;

[6] S. Aoki, Phys. Rev. Lett. 57, (1986) 3136.

[7] V. Azcaoiti, V. Laliena and X.Q. LuoPhys. Lett. B 354, (1995) 111.

[8] R. Aloisio, V. Azcaoiti, G. di Carlo, A. Galante and A. F. o, Nucl. Phys. B 606, (2001) 322
[hep-1at/0011079].

[9] V. Azcoiti, G. di Carlo and A. Vaquerd?hys. Rev. D 79, (2009) 0145094dr Xi v: 0809. 2972].
[10] S. Sharpe and R. Singleton, Rhys. Rev. D 58, (1998) 074501Hep- | at / 9804028].
[11] H. Leutwyler and A. SmilgaPhys. Rev. D 46, (1992) 5607.
[12] S. SharpePhys. Rev. D 79, (2009) 0545034r Xi v: 0811. 0409].
[13] Ferenc NiedermayeNucl. Phys. Proc. Suppl. 73, (1999) 105-119Hep- | at / 9810026].
[14] P. Hasenfratz, V. Laliena and F. Niedermay#hys. Lett. B 427, (1998) 125 hep- | at / 9801021].



