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1. Introduction

In Quantum Chromodynamics (QCD), the topological susceptibility (χt ) is the most crucial
quantity to measure the topological charge fluctuation of the QCD vacuum, which plays an impor-
tant role in breaking theUA(1) symmetry. Theoretically,χt is defined as

χt =

∫

d4x〈ρ(x)ρ(0)〉 , ρ(x) =
1

32π2 εµνλσ tr[Fµν(x)Fλσ (x)]. (1.1)

Using the Chiral Perturbation Theory (ChPT), Leutwyler andSmilga [1] obtained the follow-
ing relations in the chiral limit

χt = Σ
(

1
mu

+
1

md

)−1

, (N f = 2), (1.2)

χt = Σ
(

1
mu

+
1

md
+

1
ms

)−1

, (N f = 3), (1.3)

wheremu, md, andms are the quark masses, andΣ is the chiral condensate. This implies that in the
chiral limit (mu → 0) the topological susceptibility is suppressed due to internal quark loops. Most
importantly, (1.2) and (1.3) provide a viable way to extractΣ from χt in the chiral limit.

From (1.1), one obtains

χt =

〈

Q2
t

〉

Ω
, Qt ≡

∫

d4xρ(x), (1.4)

whereΩ is the volume of the system, andQt is the topological charge (which is an integer for QCD).
Thus, one can determineχt by counting the number of gauge configurations for each topological
sector. Furthermore, we can also obtain the second normalized cumulant

c4 = −
1
Ω
[

〈Q4
t 〉−3〈Q2

t 〉
2] , (1.5)

which is related to the leading anomalous contribution to the η ′−η ′ scattering amplitude in QCD,
as well as the dependence of the vacuum energy on the vacuum angle θ .

Recently, the topological susceptibility and the second normalized cumulant have been mea-
sured in unquenched lattice QCD with exact chiral symmetry,for N f = 2 andN f = 2+ 1 lattice
QCD with overlap fermion in a fixed topology [2, 3, 4], andN f = 2+1 lattice QCD with domain-
wall fermion [5]. The results of topological susceptibility turn out in good agreement with the
Leutwyler-Smilga relation in the chiral limit, with the values of the chiral condensate as follows.

ΣMS(2 GeV) = [259(7)(8) MeV]3, (N f = 2), Ref.[2, 3],

ΣMS(2 GeV) = [258(8)(7) MeV]3, (N f = 2+1), Ref.[4],

ΣMS(2 GeV) = [259(6)(9) MeV]3, (N f = 2+1), Ref.[5].

These results assure that lattice QCD with exact chiral symmetry is the proper framework to tackle
the strong interaction physics with topologically non-trivial vacuum fluctuations. Obviously, the
next task for unquenched lattice QCD with exact chiral symmetry is to determine the second nor-
malized cumulantc4 to a good precision, and to address the question how the vacuum energy
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depends on the vacuum angleθ and related problems. Theoretically, it is interesting to obtain
an analytic expression ofc4 in ChPT, as well as to extend the Leutwyler-Smilga relation to the
one-loop order of ChPT.

Recently, we have derived the topological susceptibilityχt to the one-loop order in ChPT, for
an arbitrary number of flavors, as well as the second normalized cumulantc4 at the tree level of
ChPT [6]. In this talk, we outline our derivations and point out the salient features of our results.

2. Topological susceptibility and c4 at the tree level of ChPT

The leading terms of the effective chiral lagrangian for QCDwith N f flavor atθ = 0 [7] are
the kinetic term and the symmetry breaking term,

L
(2) = L

(2)
eff +L

(2)
s.b. =

F2
π
4

Tr(∂µU∂ µU†)+
Σ
2

Tr(MU† +UM
†), (2.1)

whereU(x) = exp{2iφa(x)ta/Fπ} is a group element ofSU(N f ), M is the quark mass matrix,
Fπ is the pion decay constant, andΣ = 〈ψ̄ψ〉vac is the chiral condensate of the QCD vacuum. It
is well known that the physical vacuum angle on which all physical quantities depend isθphys =

θ + argdet(M ) rather thanθ . Also, theθ -dependence ofZN f (θ) always enters through the com-
binationsM eiθ/N f andM †e−iθ/N f . For small quark masses (L � m−1

π ), the unitary matrixU does
not depend onxµ . Thus the kinetic term in the leading-order chiral lagrangian can be dropped, the
partition function becomes

ZN f (θ) =
∫

dU exp
{

Ω Σ Re
[

Tr(M eiθ/N f U†)
]}

, (2.2)

whereΩ = L3T is the space-time volume. If we consider a sufficiently largevolumeΩ satisfying
m jΣΩ � 1, then the group integral in the partition function (2.2) islargely due to theU which
minimizes the minus exponent of the integrand. So we have thevacuum energy density,

εvac(M ,θ) = −
1
Ω

logZN f (θ) = ε0−Σmin
U

{

−Re
[

Tr(M eiθ/N f U†)
]}

, (2.3)

whereε0 corresponds to the normalization factor of the partition function.

Without loss of generality, the unitary matrixU can be taken to be diagonal with elementseiα j ,
where∑N f

j=1α j = 0. We can also choose the mass matrix to be diagonalM = diag(m1, . . . ,mN f ).
Then the vacuum energy density can be written as

ε0−Σmin
φ

{

−
N f

∑
j=1

m j cosφ j

}

,
N f

∑
j=1

φ j = θ , (2.4)

whereφ j = θ/N f −α j, and∑ j φ j = θ .

Now we solve the minimization problem. For the purpose of obtaining the topological sus-
ceptibility and the second normalized culmulant, we can consider the limit of smallθ (andφ j’s)
becauseU = 1I gives the minimal vacuum energy atθ = 0. To the order ofθ4, we still have the
exact result ofχt andc4 (at the tree level). Expanding cosφ ' 1− 1

2φ2 + 1
24φ4 and introducing

3
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the Lagrange multiplierλ to incorporate the constraint∑i φi = θ , we can solve the minimization
problem and getφi to the order ofθ3,

φi =
m̄
mi

θ +
θ3

6

[

(

m̄
mi

)3

−

(

m̄
mi

) N f

∑
j=1

(

m̄
m j

)3
]

+O(θ5).

wherem̄ ≡
(

∑N f

i=1m−1
i

)−1
is the “reduced mass" of theN f quark flavors. Keeping to the order of

θ4, the vacuum energy density is

εvac(θ) = ε0 + Σ

(

N f

∑
j=1

1
m j

)−1
θ2

2
−Σ

N f

∑
i=1

m−3
i

(

N f

∑
j=1

1
m j

)−4
θ4

24
+O(θ6).

It immediately follows that the topological susceptibility and the second normalized culmulant are

χt =
∂ 2εvac

∂θ2

∣

∣

∣

∣

θ=0
= Σ

(

N f

∑
j=1

1
m j

)−1

, (2.5)

c4 =
∂ 4εvac

∂θ4

∣

∣

∣

∣

θ=0
= −Σ

N f

∑
i=1

m−3
i

(

N f

∑
j=1

1
m j

)−4

. (2.6)

3. Topological susceptibility to the one-loop order of ChPT

To the one-loop order of ChPT, one has to includeL (4) [7] at the tree level as well as the
one-loop contributions ofL (2). In 1984, Gasser and Leutwyler [7] considered the low-energy
expansion, where bothp andM are assumed to be small butM /p2 can have a finite value, such
that the value ofM2

π/p2 can be fixed. In this case, the external sourcesaµ(x) and p(x) can be
counted as order ofΦ, andvµ(x) and s(x)−M as order ofΦ2. Gasser and Leutwyler showed
that at the one-loop order, the chiral effective action can be written asW = Wt +Wu +WA +O(Φ6),
whereWt denotes the sum of tree diagrams and tadpole contributions (of orderΦ2), Wu the unitarity
correction (of orderΦ3), andWA the anomaly contribution (of orderΦ4). Because theθ dependence
enters the Lagrangian only throughM , we can countχt as order ofΦ2, thus for the evaluation of
topological susceptibility to the one-loop order, and it suffices to considerWt only.

Moreover, Gasser and Leutwyler [7] showed that the pole terms due to the one-loop contribu-
tions ofL (2) can be absorbed by the low-energy coupling constants ofL (4), andWt is given by
[7]

Wt = ∑
P

∫

d4x
F2

π
2

{

1
N f

−
M2

P

16π2F2
π

ln
M2

P

µ2
sub

}

σ ∆
PP

+∑
P

∫

d4x
F2

π
2

{

N f

N2
f −1

−
M2

P

16π2F2
π

ln
M2

P

µ2
sub

}

σ χ
PP +

∫

d4xL r(4), (3.1)

whereM2
P’s are the squared meson masses,σ ∆

PP corresponds to the kinetic term which can be
dropped in the limit of small quark masses,σ χ

PP corresponds to the symmetry breaking term,

σ χ
PP =

1
8

Tr
({

λP,λ †
P

}

(χ†U +U†χ)
)

−M2
P , (3.2)
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andL r(4) is justL (4) with renormalized low-energy coupling constants,

L
r(4) = Lr

1

{

Tr[DµU(DµU)†]
}2

+ Lr
2Tr
[

DµU(DνU)†]Tr
[

DµU(DνU)†]

+Lr
3Tr
[

DµU(DµU)†DνU(DνU)†]+ Lr
4Tr
[

DµU(DµU)†]Tr
(

χU†+U χ†)

+Lr
5Tr
[

DµU(DµU)†(χU†+Uχ†)
]

+ Lr
6

[

Tr
(

χU† +Uχ†)]2

+Lr
7

[

Tr
(

χU†−U χ†)]2 + Lr
8Tr
(

Uχ†Uχ†+ χU†χU†)

−iLr
9Tr
[

FR
µνDµU(DνU)† + FL

µν(DµU)†DνU
]

+ Lr
10Tr

(

UFL
µνU†Fµν

R

)

+Hr
1Tr
(

FR
µνFµν

R + FL
µνFµν

L

)

+ Hr
2Tr
(

χχ†) . (3.3)

Hereχ = 2(Σ/F2
π )M ≡ 2B0M , λP’s are the generators ofSU(N) in the physical basis,{Lr

i (µsub), i =
1, · · · ,10} are renormalized low-energy coupling constants, and the last two contact terms (with
couplingsHr

1(µsub) andHr
2(µsub)) are the counter terms required for renormalization of the one-

loop diagrams.
For small quark masses (L � m−1

π ), the unitary matrixU does not depend onxµ , thus the term
involving σ ∆

PP in (3.1) can be dropped. Only the term withσ χ
PP in (3.1), and the sixth, seventh, and

eighth terms inL r(4) (3.3) are relevant to the partition function.
Now we follow the same procedure as that in deriving the tree-level formula. First, we replace

M with M eiθ/N f . Then we takeU andM to be diagonal, definingφ j = θ/N f −α j, and∑ j φ j = θ ,
similar to Eq. (2.4). Next we consider a sufficiently large volume m jΩΣ � 1, such that we can
use saddle-point approximation to evaluate the partition function. Also we use smallθ (smallφ j’s)
approximation and keep terms up to the order ofφ2

j . Then to obtain the vacuum energy density
amounts to the minimization problem,

εvac = ε0−min
φ

[

Σ
2

N f

∑
j=1

m jφ2
j −

Σ
8F2

π
∑
P

N f

∑
j=1

{

λP,λ †
P

}

j j
m jφ2

j
M2

P

16π2 ln
M2

P

µ2
sub

+16B2
0Lr

6

N f

∑
i=1

mi

N f

∑
j=1

m jφ2
j +16B2

0Lr
7

(

N f

∑
j=1

m jφ j

)2

+16B2
0Lr

8

N f

∑
j=1

m2
jφ2

j

]

, (3.4)

with the constraint∑ j φ j = θ . We introduce the Lagrange multiplierλ to incorporate this constraint
in finding the minimum. For simplicity, we define

A j ≡
Σ
2

m j −
Σ

8F2
π

∑
P

{

λP,λ †
P

}

j j
m j

M2
P

16π2 ln
M2

P

µ2
sub

+16B2
0

(

Lr
6m j

N f

∑
i=1

mi + Lr
8m2

j

)

,

B j ≡ 4B0(L
r
7)

1/2m j.

Then the minimization problem amounts to solving the equation

∂
∂φi





N f

∑
j=1

A jφ2
j +

(

N f

∑
j=1

B jφ j

)2

−λ

(

N f

∑
j=1

φ j −θ

)



= 0. (3.5)

Defining(T)i j ≡ 2Aiδi j +2BiB j, (3.5) becomes∑N f

j=1(T)i jφ j = λ , which is a set of linear equations.
Thus we can solveφi’s and obtainλ from this set of equations and the constraint. Finally we obtain

5
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the vacuum energy density

εvac(θ) = ε0 +
θ2

2

[

N f

∑
i, j=1

(T−1)i j

]−1

. (3.6)

To simplify the expression, we rewrite the matrixT as

(T)i j ≡ 2Aiδi j +2BiB j = Σ(M + T′)i j. (3.7)

SinceM−1/2T′M−1/2 is real and symmetric, and each eigenvalue is much less than one in the
chiral limit, we can use the Taylor expansion

(1I+M
−1/2T′

M
−1/2)−1 ' 1I−M

−1/2T′
M

−1/2 +O(m2),

and obtain the topological susceptibility

χt =
∂ 2εvac

∂θ2

∣

∣

∣

∣

θ=0
=

[

N f

∑
i, j=1

(T−1)i j

]−1

' Σm̄

{

1−
1

4F2
π

∑
P

N f

∑
j=1

{

λP,λ †
P

}

j j

(

m̄
m j

)

M2
P

16π2 ln
M2

P

µ2
sub

+ K6

N f

∑
i=1

mi + N f (N f K7+ K8)m̄

}

, (3.8)

where

Ki ≡
32B2

0Lr
i (µsub)

Σ
= 32

(

Σ
F4

π

)

Lr
i (µsub), m̄ ≡

(

N f

∑
i=1

m−1
i

)−1

,

and all terms proportional toK2
i or KiK j have been dropped. Equation (3.8) is the main result we

have derived in [6].
For N f = 2, there are three mesons,π+, π0, andπ−. If we take their masses to be the same,

we obtain

χt = Σ
(

1
mu

+
1

md

)−1[

1−
3

2F2
π

M2
π

16π2 ln
M2

π
µ2

sub

+ K6(mu + md)+2(2K7+ K8)
mumd

mu + md

]

. (3.9)

Next we turn to the caseN f = 3. Taking the eight pseudoscalar mesons with non-degenerate
masses, we obtain

χt = Σm̄

{

1−
1

2F2
π

[

∑
i6= j

(

m̄
mi

+
m̄
m j

)

B0(mi + m j)

16π2 ln
B0(mi + m j)

µ2
sub

+

(

m̄
mu

+
m̄
md

)

M2
π0

16π2 ln
M2

π0

µ2
sub

+
1
3

(

m̄
mu

+
m̄
md

+4
m̄
ms

)

M2
η

16π2 ln
M2

η

µ2
sub

]

+K6(mu + md + ms)+3(3K7+ K8)m̄

}

, (3.10)

wherem̄ =
(

m−1
u + m−1

d + m−1
s

)−1
, andB0 = Σ/F2

π .

6
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4. Concluding remark

We have derived the topological susceptibility to the one-loop order in ChPT, in the limit
mΣΩ � 1, for N f = 2 [Eq. (3.9)],N f = 3 [Eq. (3.10)], and an arbitrary number of flavorsN f [Eq.
(3.8)] respectively.

For N f = 3, since the mass of the strange quark is much heavier than themasses ofu andd
quarks, it seems reasonable just to incorporate the one-loop corrections due to theu andd quarks.
Then, forN f = 2+ 1 (u and d quarks to the one-loop order, ands quark at the tree level), the
topological susceptibility becomes

χt = Σ

{

(

1
mu

+
1

md

)[

1 +
3

2F2
π

M2
π

16π2 ln
M2

π
µ2

sub

−K6(mu + md)−2(2K7+ K8)
mumd

mu + md

]

+
1

ms

}−1

.

(4.1)

This supplements (3.10) for the caseN f = 2+1.
In view of the one-loop results ofχt , [Eqs. (3.9), (3.10), and (4.1)], it would be interesting

to see whether theχt measured in lattice QCD with exact chiral symmetry would agree with the
prediction of ChPT. Most importantly, these one-loop formulas provide a viable way to determine
the low-energy constantsFπ , L6, L7 andL8, in addition to the chiral condensateΣ which has already
been determined [3, 5, 4] using the formula ofχt at the tree level (2.5). At this point, we note that
the finite volume effect onχt (to one-loop order in ChPT) has been recently studied in [8].

Finally, we turn to the second normalized cumulantc4. At this moment, we only have a
formula ofc4 (2.6) at the tree level. ForN f = 2, the ratioc4/χt = −1/4 in the isospin limit (mu =

md) seems to rule out the instanton gas/liquid model which predicts thatc4/χt = −1. Obviously, it
would be interesting to derive a formula ofc4 for the next (non-vanishing) order in ChPT.
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