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1. Introduction

In Quantum Chromodynamics (QCD), the topological susb#iyi ( ;) is the most crucial
guantity to measure the topological charge fluctuation ef Q€D vacuum, which plays an impor-
tant role in breaking thEla(1) symmetry. Theoreticallyy; is defined as

X = [d%(p09p(0)), PX) = 5sEpnattTFun (X)Fag ()] a.1)

Using the Chiral Perturbation Theory (ChPT), Leutwyler &mdilga [1] obtained the follow-
ing relations in the chiral limit

-1

m=%%+%>,<m=a (1.2)
-1

xt:2<%+%+ni‘s> . (Ny=3), (1.3)

wherem,, my, andms are the quark masses, ahds the chiral condensate. This implies that in the
chiral limit (m, — 0) the topological susceptibility is suppressed due taivatequark loops. Most
importantly, (1.2) and (1.3) provide a viable way to extradtom x; in the chiral limit.

From (1.1), one obtains

2
x =% o= [aow, (L.4)

whereQ is the volume of the system, a¥l is the topological charge (which is an integer for QCD).
Thus, one can determing by counting the number of gauge configurations for each tapoél
sector. Furthermore, we can also obtain the second nomdatizmulant

cs =g (G 3@, (1.5)

which is related to the leading anomalous contribution &rth— n’ scattering amplitude in QCD,
as well as the dependence of the vacuum energy on the vacuglenéan

Recently, the topological susceptibility and the seconanatized cumulant have been mea-
sured in unguenched lattice QCD with exact chiral symmédtmyN;: = 2 andN; = 2+ 1 lattice
QCD with overlap fermion in a fixed topology [2, 3, 4], aNg = 2+ 1 lattice QCD with domain-
wall fermion [5]. The results of topological susceptilyiliturn out in good agreement with the
Leutwyler-Smilga relation in the chiral limit, with the wads of the chiral condensate as follows.

sMS(2 GeV) = [2597)(8) MeV]?, (N;=2), Ref|2, 3],
sMS(2 GeV) = [2588)(7) MeV]®, (Nf=2+1), Refl4],
sMS(2 GeV) = [2596)(9) MeV]?, (Nf=2+1), Ref[s].

These results assure that lattice QCD with exact chiral sgtnynis the proper framework to tackle
the strong interaction physics with topologically nondl vacuum fluctuations. Obviously, the
next task for unquenched lattice QCD with exact chiral sytnynis to determine the second nor-
malized cumulant, to a good precision, and to address the question how the naemergy
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depends on the vacuum andleand related problems. Theoretically, it is interesting ibam
an analytic expression af; in ChPT, as well as to extend the Leutwyler-Smilga relatiorthie
one-loop order of ChPT.

Recently, we have derived the topological susceptibjpityo the one-loop order in ChPT, for
an arbitrary number of flavors, as well as the second noretdlcmulantc, at the tree level of
ChPT [6]. In this talk, we outline our derivations and point the salient features of our results.

2. Topological susceptibility and ¢4 at the tree level of ChPT

The leading terms of the effective chiral lagrangian for Q@ith N¢ flavor at@ = 0 [7] are
the kinetic term and the symmetry breaking term,

2
2@ = 224 74 %Tr(auu orut) + %Tr(///U fru.ah, (2.1)

whereU (x) = exp{2i¢?(x)t?/F} is a group element a8J (N;), . is the quark mass matrix,
Fr is the pion decay constant, a@d= (/(J/)y4c is the chiral condensate of the QCD vacuum. It
is well known that the physical vacuum angle on which all ptgisquantities depend i8nys =

0 + argde{.#) rather tharf. Also, theB-dependence dly, (6) always enters through the com-
binations.#€®/Nt and.# e "9/Nr, For small quark massek & m;1), the unitary matrixy does
not depend ox,. Thus the kinetic term in the leading-order chiral lagramgtan be dropped, the
partition function becomes

Zn, (6) = /dU exp{Q 3 Re[Tr(.#e®/Mu)|}, 2.2)

whereQ = L3T is the space-time volume. If we consider a sufficiently largeime Q satisfying
m;ZQ > 1, then the group integral in the partition function (2.2)aggely due to théJ which
minimizes the minus exponent of the integrand. So we haveabeum energy density,

Evac( A ,0) = —é logZy, (8) = & — ertljin{—Re [Tr(///eie/’\‘f U T)} } : (2.3)

wheregy corresponds to the normalization factor of the partitiomction.

Without loss of generality, the unitary mattikcan be taken to be diagonal with elemegfs,
wherez'j\';l aj = 0. We can also choose the mass matrix to be diagefiak diag(my,...,my;).
Then the vacuum energy density can be written as

N Nt
&—Zming — Y m;cosy ;, =0, 2.4
0 " { JZl j (PJ} le(pj (2.4)

whereg, = 8/Ns —aj, andy ; ¢ = 6.

Now we solve the minimization problem. For the purpose ofling the topological sus-
ceptibility and the second normalized culmulant, we carsmi®r the limit of small@ (and ¢;'s)
becausé) = 1 gives the minimal vacuum energy @t= 0. To the order oB*, we still have the
exact result ofy; andcs (at the tree level). Expanding cgs~ 1— ¢? + ¢ and introducing
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the Lagrange multiplieA to incorporate the constrairyt; @ = 6, we can solve the minimization
problem and ged to the order 02,

o=re+ 5|7 -(RAE)

-1
wherem= (ziN:fl rrﬁ) is the “reduced mass" of tHe; quark flavors. Keeping to the order of

+0(6%).

6%, the vacuum energy density is

N 1 -1 62 N 3 N 1 —4 94 6

It immediately follows that the topological susceptilyildnd the second normalized culmulant are

-1
X 9%&yac s % 1 (2.5)
t = = - ) .

062 6=0 =1 m;
4
a4gvac N _ 3 Ni l
= =_3 - . 2.6
T 0 i;m 121 m; 9

3. Topological susceptibility to the one-loop order of ChPT

To the one-loop order of ChPT, one has to inclu#é® [7] at the tree level as well as the
one-loop contributions 0fZ@. In 1984, Gasser and Leutwyler [7] considered the low-gnerg
expansion, where both and.# are assumed to be small but /p? can have a finite value, such
that the value oM2/p? can be fixed. In this case, the external sourgg&) and p(x) can be
counted as order ab, andv,(x) ands(x) —.# as order of®2. Gasser and Leutwyler showed
that at the one-loop order, the chiral effective action camwhkitten asV =W +W, +Wa + &/(P°),
whereW denotes the sum of tree diagrams and tadpole contributimsder®?), W, the unitarity
correction (of orde3), andwWj the anomaly contribution (of ordér*). Because thé dependence
enters the Lagrangian only throught, we can counj; as order ofb?, thus for the evaluation of
topological susceptibility to the one-loop order, and ifises to consideY\y only.

Moreover, Gasser and Leutwyler [7] showed that the polegeatoe to the one-loop contribu-
tions of Z(@ can be absorbed by the low-energy coupling constantg’dt, andW is given by

[7]

F2 M2 M2
4 A
W= Z/d {Nf Torerz " 2 b}ap"

N¢ M3 M3
4, p Iy 1 (#),
+Z/dx2 { - Tere b}app+/dx.,zﬂ 3.1)

where M3's are the squared meson masse$, corresponds to the kinetic term which can be
dropped in the limit of small quark massez;ﬁp corresponds to the symmetry breaking term,

oo = ;Tr({)\p,/\ }(XTU +U x)) M2, (3.2)
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and.Z"@ is just. 2 with renormalized low-energy coupling constants,

2@ = L {Tr[D,U (DHU)T} + LTr [D4U (DLU) 1] Tr [DFU (DVU) ]
+L5Tr [DLU (DHU) DU (DYU)T] + LTr [DU (DHU) T Tr(xUT+U xT)
HLETr [DLU (DHU) (XU T +UXT)] + Ly [Tr (xuT +Ux )2
LG [Tr(xUT—UxN] 2+ LaTr (UxTux T+ xuTxu™)
—iLgTr [Ff,DHU(DYU)T+F}, (DHU)TDYU ] + LioTr (UFL,UTREY)
+HITr (FR R+ FLRMY) +HSTr (xx ). (3.3)

Herex = 2(2/F2).4 = 2Bo.#, Ap’s are the generators 8 (N) in the physical basigL! ( tsp),i =
1,---,10} are renormalized low-energy coupling constants, and thietééo contact terms (with
couplingsHj (HUsuy) andHj(psuy)) are the counter terms required for renormalization of the-o
loop diagrams.

For small quark massek & m;1), the unitary matrixJ does not depend on,, thus the term
involving gy in (3. 1) can be dropped. Only the term W'ﬂfﬁp in (3.1), and the sixth, seventh, and
eighth terms inZ" ¥ (3.3) are relevant to the partition function.

Now we follow the same procedure as that in deriving the kegel formula. First, we replace
A with .22€®/N' . Then we také&J) and.# to be diagonal, definingj = 6/N¢ — aj, andy ; ¢, = 6,
similar to Eqg. (2.4). Next we consider a sufficiently largdwone m; Q% > 1, such that we can
use saddle-point approximation to evaluate the partitimetion. Also we use smafl (small ¢;’s)
approximation and keep terms up to the orderpﬁ).f Then to obtain the vacuum energy density
amounts to the minimization problem,

N Ny 2 2
P2 > M M
Nt Nt Nt 2
+16B3LY Zim z qu)J +16B3LY (z m,q;) +16B3LG Z mchJ] (3.4)
with the constrain§ ; ¢, = 6. We introduce the Lagrange multipli@rto incorporate this constraint
in finding the minimum. For simplicity, we define

.z ME M3 2 <
B = 4Bo(|_7)1/2m,-.

Then the minimization problem amounts to solving the equati

9 N N¢ 2 N¢
—(n ZlAj(sz-l-(lejQDJ) —A (Zlfpj—9> =0. (3.5)
= = =

Defining(T)ij = 2Ai4j +2B;Bj, (3.5) becomeilj\il(T)ij @ = A, which is a set of linear equations.
Thus we can solvgy’s and obtaim from this set of equations and the constraint. Finally weiobt
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the vacuum energy density

Nt

1
> (T_l)ij] : (3.6)

i,]=1

2

&vac(0) = &0+ >

To simplify the expression, we rewrite the matfixas
(T)ij = 2Ai&; + 2B;B; :Z(///-i-T/)ij. (3.7)

Since.#~Y2T'.# %2 is real and symmetric, and each eigenvalue is much less thamncthe
chiral limit, we can use the Taylor expansion

A+ 2T ) e A= TPT Y - o(nP),

and obtain the topological susceptibility

Nt -1
= [Z (Tl)ij]
6=0 i,]=1
N = 2 2 Ny
_ 1 n (M) M2 M3
~ Zm{l—ﬁzgl{)\p,)\,;}”< >16 SIn—> Z +K621m+Nf N¢K7 + Kg)m } (3.8)

where

92 Evac

X= 502

-1
_ 32BfL{ (Hs) )2 = _ v —1
Ki= + 32 F4 Lr(ﬂsub)> m= |erni )
and all terms proportional tKiz or KiK;j have been dropped. Equation (3.8) is the main result we
have derived in [6].

For Ns = 2, there are three mesonst, °, andrr. If we take their masses to be the same,
we obtain

M2 mymy

=3 i+i - 1- 3 I\/|’2TI n— 4 Kg(my + mg) 4 2(2K7 + Kg)
Xt = my Mg 2F2 167_[2 IJ 6(My -+ Ny 7 8 My + Mg

. (3.9)

Next we turn to the casi; = 3. Taking the eight pseudoscalar mesons with non-degenerat
masses, we obtain

X = Zrﬁ{l_i [; <ﬁ+ > Bo(m +m;) Bo(m2+mj)

2F7? m o m 1672 [TEN

m m\ M4 M3 1/m m  m\ Mj M2
+—+—= 2In Pzl —+—+4— —In—-

m, my/ 16 p2, 3\my omy mg) 16 p2,
+Ke(my + My + ms) + 3(3K7 + Kg)rﬁ}, (3.10)

wherem= (m;1+myt+ mgl)fl, andBy = X /F2.
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4. Concluding remark

We have derived the topological susceptibility to the ao@pl order in ChPT, in the limit
mzQ > 1, for Ny = 2 [EqQ. (3.9)],Ns = 3 [Eq. (3.10)], and an arbitrary number of flaviNs [EqQ.
(3.8)] respectively.

For N; = 3, since the mass of the strange quark is much heavier thandhkses oti andd
quarks, it seems reasonable just to incorporate the oqedoections due to theandd quarks.
Then, forNs =2+ 1 (u andd quarks to the one-loop order, asdjuark at the tree level), the
topological susceptibility becomes

-1
1 1 3 M2 M2 MmyMy 1
= (=+=) |1+ ==L —K — 2(2K7+K — 5 .
Xt {(nh+n1d>[ +2F%16n2nu;b 6(Mu+My) — 2(2K7 + s)nwmdhms
(4.1)

This supplements (3.10) for the cdde= 2+ 1.

In view of the one-loop results of;, [Eqgs. (3.9), (3.10), and (4.1)], it would be interesting
to see whether thg measured in lattice QCD with exact chiral symmetry wouldeagwith the
prediction of ChPT. Most importantly, these one-loop folasuprovide a viable way to determine
the low-energy constanis;, Lg, L7 andLg, in addition to the chiral condensafenhich has already
been determined [3, 5, 4] using the formulaypfat the tree level (2.5). At this point, we note that
the finite volume effect o (to one-loop order in ChPT) has been recently studied in [8].

Finally, we turn to the second normalized cumulapnt At this moment, we only have a
formula ofc4 (2.6) at the tree level. Fo¥; = 2, the ratiocs/x; = —1/4 in the isospin limit fn, =
mq) seems to rule out the instanton gas/liquid model whichiptethatc,/x; = —1. Obviously, it
would be interesting to derive a formula @f for the next (non-vanishing) order in ChPT.
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