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The negative Wilson mass parameter is an input parameter to the overlap Dirac operator. We

examine the extent to which the topological charge density,revealed by the overlap definition,

depends on the value of the negative Wilson mass. A strong dependence is observed, which can

be correlated with the topological charge density obtainedfrom the gluonic definition, with a

variable number of stout-link smearing sweeps. The resultsindicate that the freedom typically

associated with fat-link fermion actions, through the number of smearing sweeps, is also present

in the overlap formalism, through the freedom in the Wilson mass parameter.
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1. Introduction

By simulating the theory of quantum chromodynamics on a four-dimensional space-time lat-
tice, one can directly probe the topological structure of the quantum vacuum. An integral compo-
nent of the continuum theory is the realization of an exact chiral symmetry in the massless limit.
Ideally, Lattice QCD calculations should also observe thissymmetry. Unfortunately, simple tran-
scriptions of the fermion action explicitly break this symmetry at the order of the lattice spacing.

The famous Nielsen-Ninomiya “no-go” theorem [1] explains the difficulties with implement-
ing chiral symmetry on the lattice. In the early 80’s, Ginsparg and Wilson [2] proposed that the
smoothest way to break chiral symmetry on the lattice was to obey the Ginsparg-Wilson relation,

Dγ5 + γ5D = aDRγ5D . (1.1)

A popular solution to Eq. (1.1) is the overlap Dirac operator[3, 4],

D =
m
a



1+
DW(−m)

√

D†
W(−m)DW(−m)



 , (1.2)

where the Wilson-Dirac operatorDw, with a negative Wilson mass−m, is the standard choice of
input kernel. The overlap operator is known to observe an exact chiral symmetry on the lattice,
and satisfies the Atiyah-Singer index theorem, where the total topological chargeQ is equal to the
difference of Dirac zeromodes with opposite chirality.

The topological charge density can be extracted from the trace of the overlap operator,

qov(x) = −Tr
[

γ5

(

1−
a

2m
D

)]

, (1.3)

which allows studies of the〈qov(x)qov(0)〉 correlator and the topological vacuum structure [5]. An
ultraviolet cutoff can be introduced through the spectral representation [6, 7],

qλcut
(x) = − ∑

|λ |<λcut

(

1−
λ
2

)

ψ†
λ (x)γ5ψλ (x) . (1.4)

We begin these proceedings by highlighting recent researchresults [5] comparing the UV
filtered overlap topological charge density to the long established gluonic definition,

qsm(x) =
g2

16π2 Tr
(

Fµν F̃µν
)

, (1.5)

obtained after smearing the gauge field. Following this, we consider the extent to which the nega-
tive Wilson mass parameter used in the Wilson-Dirac input kernel of Eq. (1.2) affects the overlap
topological charge density.

2. Stout-link smearing and the overlap Dirac operator

The gluonic definition of the topological charge density in Eq. (1.5) is only valid on “smooth”
gauge fields. Many prescriptions exist for smoothing a gaugefield, however discretization errors
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Figure 1: The overlap〈q(x)q(0)〉 correlator from the full topological charge density and thecorresponding
smeared correlator [5]. The match can be further fine tuned byvarying the smearing parameter.

can skew the results. For studies of QCD vacuum structure, itis important to choose a topologically
stable smearing algorithm, such as the over-improved stout-link smearing algorithm [8]. This is a
modification of the original stout-link algorithm, in whichthe standard plaquette is replaced by
a combination of plaquettes and rectangles, tuned to preserve topological objects in the vacuum
whilst smearing. We use the parameters proposed in Ref. [8] and refer the reader to that publication
for full details of the algorithm and its efficiency. The topological charge density is then extracted
using Eq. (1.5) in combination with anO(a4)-improved field strength tensor.

In comparisons between the gluonic and overlap topologicalcharge densities, the gluonic def-
inition may not always provide an integer topological charge Q. For this reason, it is common to
apply a multiplicative renormalization factorZ, qsm(x) → Z qsm(x), whereZ is chosen such that
Qsm≡ ∑xqsm(x) equalsQov, which is always an exact integer. The renormalization factors are
typically close to 1. The interested reader is encouraged toconsult Ref. [5] for the values.

We begin with a comparison of the〈q(x)q(0)〉 correlator, which should be negative for any
x > 0 [9, 10, 11]. This was first observed for the overlap in Ref. [11], and it was later shown in
Ref. [12], that this behavior can be reproduced with the gluonic definition. Figure 1 shows the
overlap correlator and the best smeared match using a smearing parameter ofρ = 0.06 with 5
sweeps of over-improved stout-link smearing. We note that by varying the magnitude ofρ this
match can be further fine tuned. This matching of the〈q(x)q(0)〉 enables high statistics studies
using the computationally efficient smearing algorithm, and was used in Ref. [13] to explore the
effect of dynamical quarks on QCD vacuum structure.

Ilgenfritz et al.[5] further explored the correlation between the gluonic and overlap topological
charge density using the spectral representation of the overlap operator, Eq. (1.4). They found a
direct connection between the number of stout-link smearing sweeps applied to the gauge field and
the strength of the UV cutoff. In Fig. 2 we present a sample of that work, the best match for a
cutoff of λcut = 634 MeV.

3. Role of the negative Wilson mass parameter

The (negative) Wilson mass parameter enters the definition of the overlap operator through
the Wilson-Dirac input kernel. At tree level the allowed range for the Wilson mass is 0< m< 2.

3



P
o
S
(
L
A
T
2
0
0
9
)
0
7
6

Role of the Wilson mass parameter in the overlap Dirac topological charge density Peter J. Moran

Figure 2: The overlap topological charge density (left) calculated using an UV cutoff ofλcut = 634 MeV.
On the right is the best smeared match found using 48 sweeps ofover-improved stout-link smearing [5, 8].

However, when working at a finite lattice spacinga, one must also havem& 1.0 [14]. Converting
this to the more standardκ parameter gives an allowed range of 1/6 . κ < 1/4, since at tree level,

κ ≡
1

2(−m)a+8r
. (3.1)

By varyingmwithin this range, one has access to a fermionic probe of the gauge background at
different scales∼ 1/m [4]. Previous studies have investigated how the total topological charge and
topological susceptibility depend on the value of the Wilson mass [3, 14, 15, 16]. We now extend
this work to include an analysis of the topological charge density itself. This should provide some
useful physical insights since the low-lying modes of the Dirac operator are strongly correlated
with the topological charge density [5, 17].

The overlap Dirac operator is an expensive calculation so weconsider a single spatial slice
from some representative 163 × 32 configurations. Fiveκ values, 0.17,0.18,0.19,0.21 and 0.23
are used to investigate the effect of the Wilson mass on the topological charge density. As before,
we monitor the changes inqov(x) through direct visualizations.

The topological charge densities, for the five choices ofκ , are presented in Fig. 3. A clear
dependence on the Wilson mass is apparent from the figures, with smaller values ofm revealing
greater topological charge density. This is consistent with expectations, since asm is increased the
Dirac operator becomes more sensitive to smaller topological objects.

The changes inqov(x) asm is varied appear very similar to the way that the gluonic topological
charge density depends on the number of smearing sweeps applied, and we now quantify this
connection. We use a relatively weak smearing parameter1 of ρ = 0.01, and as before, applying
a multiplicative renormalization factor. We consider two choices forZ, firstly a calculated Z,
determined using,

Z =
∑x |qov(x)|

∑x |qsm(x)|
. (3.2)

This will be compared with afitted ZwhereZ is found by minimizing,

∑
x
|qov(x)−Z qsm(x)| . (3.3)

1To be compared with the usualρ = 0.06 for over-improved stout-link smearing, orρ = 0.1 for standard stout-link
smearing
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Figure 3: The overlap topological charge densityqov(x) calculated with five choices for the Wilson massm.
From left to right, we haveκ = 0.23, 0.21, and 0.19 on the first row, with 0.18, and 0.17 on the second. There
is a clear dependence on the value ofm used, with larger values revealing a greater amount of topological
charge density.

κ = 0.23 nsw = 22

κ = 0.19 nsw = 25

κ = 0.17 nsw = 28

Figure 4: The best smeared matches (right) compared with three of the overlap topological charge densities
(left) in order of increasingm, whereqsm(x) is renormalized using the calculatedZ.
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κ nsw[calc. Z] nsw[fitted Z]

0.17 28 29
0.18 26 27
0.19 25 25
0.21 23 23
0.23 22 23

κ nsw[calc. Z] nsw[fitted Z]

0.17 29 30
0.18 26 27
0.19 25 25
0.21 23 23
0.23 22 22

Table 1: The best smeared matches for all fiveκ values considered. Results for two configurations are
reported in Table (a) (left) and (b) (right). There is a definite correlation between the choice of the Wilson
mass and the number of smearing sweeps required to match the topological charge density.

The overlap topological charge densities along with the corresponding best matches found
using the calculatedZ are shown in Fig. 4. Due to a lack of space we show only the largest,
smallest and middleκ values. As the Wilson mass is increased, and non-trivial topological charge
fluctuations are removed, a greater number of smearing sweeps are needed in order to recreate the
topological charge density. A summary of the best matches are provided in Table 1a along with
the results obtained using a fittedZ value. We note the good agreement between the two choices
for fixing the renormalization factor. Results for a second configuration are provided in Table 1b.
A comparison reveals little difference in the number of smearing sweeps required to match the
overlapq(x).

4. Conclusion

The overlap topological charge density displays a clear dependence on the value of the Wilson
mass used in the calculation. Although this was not unexpected, we are also able to show how one
can correlate the value ofκ used in the overlap to a specific number of stout-link smearing sweeps.
This implies an intimate relationship between the number ofsmearing sweeps and the value ofκ
in the overlap formalism.

We have shown how the smoothness of the gauge field as seen by the overlap operator de-
pends on the value of the Wilson mass. This is similar to fat-link fermion actions where the gauge
links are smeared with a small number of smearing sweeps and the smoothness depends on the
number of applied sweeps. The results indicate that the freedom typically associated with fat-link
fermion actions, through the number of smearing sweeps, is also present in the overlap formalism,
through the freedom in the Wilson mass parameter. However the number of smearing sweeps rel-
evant to the overlap operator is small. This connection willbe further explored in a forthcoming
publication [18].
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