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1. Introduction

At present, most lattice QCD simulations are performed at unphysical ligigrdical quark
masses. Fitting of lattice data to forms calculated in chiral perturbation th¥e)([1,[2] makes
possible a controlled extrapolation of lattice results to the physical light quadses and to the
chiral limit. This approach also allows one to determine the values of low-gergstants (LECS)
in the theory, which are of phenomenological significance. Although tftager XPT has been
used successfully for simulations with 2+1 dynamical quarks, we are stilestt in the applica-
tions of two-flavorXPT for the following reasons:

1. The up and down dynamical quark masses in simulations are usually multérshen the
strange quark mass, which is near its physical value, hence SB[®)nay serve as a better
approximation and probably converges faster than SYEZ).

2. Fits to SU(2)XPT can give us direct information about the LECs in the two-flavor theory,
especiallyiz andl,.

3. By comparing results from these two different fits, we can study therswgic errors result-
ing from the truncations of each version)oPT.

Recently, some groups have used SR for chiral fits to data from three-flavor simulatiofis [3,
[A]. Here, we perform such an SU(2) chiral analysis for MILC datarfrsimulations with 2+1
flavors of staggered fermions.

2. Rooted SU(2) SXPT

For staggered quarks, the correct effective field theory is stagghiieal perturbation theory
(SXPT) [8, [6.[F.[8.[P], in which taste-violating effects at finite lattice spacirgiacorporated
systematically. Physical quantities expressedX®®B become joint expansions in both the quark
massmy anda?, wherea is the lattice spacing.

For each quark flavor, there are four species (tastes) in the contiimainilo obtain physical
results, we use the fourth root procedure to get a single taste per ifattoe continuum limit.
Although it has been shown that this procedure produces violations alftijoat non-zero lattice
spacing non-perturbatively [[10], recent work indicates that localityariversality are restored in
the continuum limit. For a recent review of the fourth-root procedureRafe1]] and references
therein.

In the two-flavor case, only up and down quarks appear in the chirahth€orrespondingly,
there are only pions, and no kaons, in SU(2PS. The staggered Lagrangian is formulated in
the same way as in Ref] [6], except that those parts related to the straadeage omitted. Fol-
lowing the procedures used in the three-flavor case, one can calcidaiartially-quenched light
pseudoscalar mass and decay constant through NLO. The regultis [12
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wherels andl, are the standard SU(X)PT LECs, andp; and p; are two extra NLO LECs that
enter in the partially-quenched cas&,, d, are taste-violating hairpin parameters, a:?g L/(/z)
are taste-violating analytic LECs. Chiral logarithiiie?), [(m?) and residue function®, D are
given in Ref. [B], with the denominator mass-set arguments in the SU(@)dedimed as:

{jl)[(\z/]} = {nb(vvmn\’,}’ {///\[(5]} = {n}vamn\’,}’
(MG} = (M, my ), {3y = {my,.my, my ). (2.3)

The numerator mass-set arguments of the residues are ajyays= {my. }, where the taste label
= is taken equal to the taste of the denominator set.

To Egs. [2.1) and(22), we add the NNLO chiral logarithms that were ledémiby Bijnens
and Lahde[[23]. Since taste splittings are not included at NNLO, thereasniguity in defining
the pion mass in the continuum formulae. In practice, we use the root meares(RMS) average
pion mass in calculations of NNLO chiral logarithms. This is systematic at NNLI©Oragas the
taste splittings between different pions are significantly less than the piorstassnselves. This
condition is best satisfied on the superfine and ultrafine lattices.

3. Ensembles and Data Sets

At the present stage, we have the MILC data for the light pseudoscatarand decay constant
at five lattice spacings from 0.15fm to 0.045fm, generated with 2+1 flavioasqiad improved
staggered quarks. For each lattice spacing, we have several mliffer@ quark masses as well as
many different combinations of valence quark masses. In order forlii2) Sormulae to apply,
we require both sea and valence quark masses to be significantly smalléh¢hstnange quark
massj.e., mya< mg, and m‘,’Ta'ence<< mk. In the fits described below, we use the following cutoff
on our data sets:

m <02mf™S  m,+m, <0.5m"s (3.1)

wherem is the light sea quark mass, angl andm, are the valence masses in the pion.
To be able to consider the strange quark as “heavy” and eliminate it froehtred theory, it
is also necessary that taste splittings between different pion states be maitdr $han the kaon
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| Ensemble | am [ am | B | size |mgl]
~ 0.09fm (F) 0.0062 | 0.031| 7.09 | 28°x 96 | 4.14
~ 0.09fm (F) | 0.00465| 0.031| 7.085| 322x 96 | 4.10
~ 0.09fm (F) 0.0031 | 0.031| 7.08 | 40°x 96 | 4.22
~ 0.09fm (F) | 0.00155| 0.031| 7.075| 64°x 96 | 4.80

~ 0.06fm (SF) | 0.0036 | 0.018| 7.47 | 48%x 144 | 4.50
~ 0.06fm (SF) | 0.0025 | 0.018| 7.465| 56° x 144 | 4.38
~ 0.06fm (SF) | 0.0018 | 0.018| 7.46 | 64%x 144 | 4.27

~ 0.045fm (UF)| 0.0028 | 0.014| 7.81 | 64°x 192 | 4.56 |

Table 1. Ensembles used in this analysis. The quantiiesandam are the light and strange sea quark
masses in lattice unitey,L is the (sea) Goldstone pion mass times the linear spat&l $hze fine ensembles
are not used in our central value fit, but only in estimatingtesatic errors.

a ~0.09fm (F) | ~0.06fm (SF) | ~ 0.045fm (UF)
ams 0.031 0.018 0.014
am 0.00155| 0.0062| 0.0018| 0.0036 0.0028
mg (MeV) 574 613 525 548 565
mgoldstong\ev) | 177 355 224 317 324
mRMS(MeV) 281 416 258 341 334
m (MeV) 346 463 280 359 341

Table 2: Kaon masses and lightest (sea) pion masses on some samgitebdes Here three different pion
masses are shown: Goldstone, RMS and singlet 0.3117fm is used.

mass. Furthermore, taste splittings should be significantly smaller than the pieritgefsfor the
continuum formulae for the NNLO chiral logarithms to be approximately appicab

The lattices that are at least close to satisfying all these conditions includei®(a~: 0.09 fm)
ensembles, three superfinex®.06 fm) ensembles and one ultrafine ensemble@a45 fm). Rel-
evant parameters for these ensembles are listed in flable 1.

In Table[R, we list the Goldstone, RMS and singlet pion masses on refatgeensembles.
It can be seen that for the fine£a0.09 fm) ensembles, either some pion masses are close to the
kaon mass, as on ensemigtam ,ams) = (0.0062 0.031), or the taste splittings between pions are
comparable to the pion mass, as on ensertdnig, ams) = (0.001550.031). As a result, the data
from fine lattices may not be well described by SU(2) formulae with continblhibO chiral
logarithms. Our central fit uses superfine and ultrafine data only, whilaclgde fits to all three
kinds of lattices to estimate systematic errors.

There are a total of 29 parameters in our fits. The following list shows hesetparameters
are treated in the central fit.

(a) LO: 2 unconstrained parametemsand f.

(b) NLO (physical): 4 parameterss, 14 and two extra LEC9;, p2 that only appear in
partially-quenche& PT. All of these parameters are unconstrained.
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(c) NLO (taste-violating): 4 parameters);,d, are constrained within errors at the values
determined from SU(3)EPT fits ,];L’(’Z) andL, are constrained around 0, with width
of 0.3 as estimated in Ref. [l14].

(d) NNLO (physical,&(p*): 5 parametersl{, |5, Iz, ps, ps) that first appear in meson
masses and decay constants in the NNLO chiral logaritiy@ndl, are constrained by the
range determined from continuum phenomenoldgy [I6ls not constrained since it is not
directly known from phenomenologf/ [L6]. The partially-quenched patarsps andp, are
not constrained.

(e) NNLO (physical&(p®)): 8 parameters;, constrained around 0 with width 1 in “natural
units” (see Ref.[[14]).

(f) The physical LO and NLO parameters are allowed to vary with latticeisgday an
amount proportional tars(aA)?, which is the size of the “generic” discretization errors with
asqtad quarks, whergis some typical hadronic scale. This introduces 6 additional parame-
ters that are constrained around 0 with width corresponding to aAcale.7 GeV.

Alternative versions of the fits, in which the width of the constraints are gd@dnor some con-
strained parameters are left unconstrained/i@e versa, have also been tried, and the results from
those fits are included in the systematic error estimates.

4. Preliminary Results

For the central fit, we use three superfine ensem(ales ams) = {(0.0018 0.018), (0.0025
0.018), (0.0036 0.018)} and one ultrafine ensembl@am,am;) = (0.00280.014). This fit has a
X2 of 37 with 33 degrees of freedom, giving a confidence leveEOL3. The volume dependence
at NLO has been included in the fit formulae. A very smallq(3%) correction for “residual” finite
volume effects[[17], 18] is applied at the end of the calculation and incatgabin the systematic
errors of our final results.

In Fig.[d, we show the fit results fd; andmé/(m, +m,) as functions of the sum of the quark
massesrfy +my). The red curves show the complete results through NNLO for full QCDen th
continuum, where we have set taste splitting and taste-violating parameters t@xeapolated
physical parameters @s— 0 linearly in asa?, and set valence quark masses and light sea quark
masses equal. Continuum results through NLO and at tree level are $iyollne and magenta
curves, respectively. It can be seen that the convergence o)) ¥BRis much better for the decay
constant than for the mass. Nevertheless, the chiral corrections in &sgks eppear to be under
control.

The SU(2) plots presented previously in R¢f][19] are somewnhat différom those shown
here because the earlier fits allowed &variations in the NNLO analytic parametec)( Such
variations are of higher order than the NNLO terms included in this work.

At the last step, we find the physical values of the averadequark massn’by requiring that
the 1T has its physical mass, and then find the decay constant correspondig point in Fig 1L
(left). With the scale parameter = 0.3187) fm [[4] determined fron¥-splittings, we obtain the
result for f:

fr=1283(9) (*3°) MeV (4.1)
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Figure 1: SU(2) chiral fits tof(left) andm?,/(my + my)(right). Only points with the valence quark masses
equal (n, = my) are shown on the plots

where the first error is statistical and the second is systematic. This agitbethe PDG 2008
value, f; = 1304+ 0.2 MeV [R0]. Alternatively, using the pion decay constant from NNLO S)U(
XPT fits to define our scale gives= 0.31176) (*33) fm [L5]. With this newr;, we obtain:

f, = 1237(9)(18) MeV By = 2.89(2) (73) (14) MeV
I3 =3.0(6) (*2) I, =3.9(2)(3) (4.2)
M= 3.21(3)(5)(16) MeV (U2 = —[280(2) (7%) (4) MeV}?

The quark masses and chiral condensate are evaluated MShscheme at 2GeV. We use the
two-loop renormalization factor in the conversign][21]. Errors fromtymiiative calculations are
listed as the third error in these quantities. All the quantities agree with resuttisSiJ(3) XPT
fits [[L3] within errors.

5. Discussion and Outlook

We have performed NNLO SU(2) chiral fits to recent asqtad data in the piggtidoscalar
sector. Results for SU(2) LECs, the pion decay constant, and the chivdénsate in the two-flavor
chiral limit are in good agreement with those obtained from NNLO SU(3) fitp{emented by
higher-order analytic terms for quantities involving strange valence g)JafK. It can be seen
from our plots that SU(2XPT within its applicable region converges much faster than SKR3).

For the point 0.05 on the-axis in Fig.[1, the ratio of the NNLO correction to the result through
NLO is 0.3% for f; and 2.6% form;/(my+my). In contrast, the corresponding numbers in the
SU(3) fits are 2.9% and 15.6% respectively (Fig. 2 of [15]), alghotine large correction in
the mass case is partly the result of an anomalously small NLO term. Note that/(Bg [Bots
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use a non-physical strange quark mass= 0.6mE™S while for the SU(2) plots, the strange quark
mass is near the physical valum, ~ mE™S This explains why the two-flavor chiral limits on the
SU(3) and SU(2) plots are not the same.

Since the simulated strange quark masses vary slightly between diffessmiles, the pa-
rameters in SU(2) BPT should also change with ensemljld [12]. We plan to incorporate this effec
in our fit to see if we can improve the confidence levels. Another step wautd include the kaon
as a heavy particle in SUX®T [22] in order to study the physics involving the strange quark,
e.g, the kaon mass and decay constant. This approach has recently bden Refs. [[B[}4].
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