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1. Introduction

Lattice QCD breaks several global symmetries of the (formal) continuum theory. It follows
that the corresponding lattice currents are not exactly conserved, and require finite renormalization
to match to continuum currents. A standard method for determining the renormalization factors
is to impose Ward-Takahashi identities (WTI) which would hold were the symmetry exact. The
resulting renormalization factors depend on the WTI chosen, although this dependence vanishes
with some power of the lattice spacing.

An important example is the breaking of chiral symmetry when using Wilson fermions (possi-
bly improved). The current is then the non-singlet axial current, and one determines ZA by imposing
a WTI following from SU(2)L×SU(2)R chiral symmetry (assuming two flavors) [1].

In this note we address the question of how ZA depends upon the choice of WTI, and how
the dependence enters into results for matrix elements of the renormalized axial current, e.g. fπ .
As noted already, the variation in ZA is a discretization error, and thus the question is naturally
addressed using Wilson chiral perturbation theory (WChPT), i.e. ChPT with discretization errors
incorporated [2]. It turns out, however, that the results on this issue in the literature [3, 4] are
incorrect. Here we present a brief summary of our recent reanalysis [5], explaining what was
missed in the earlier work, and commenting on the significance of our new results. Our analysis
controls only discretization errors linear in a, and thus is useful only if either the action or the
currents (or both) are unimproved. The methodology can, however, be extended to higher order in
a, and the overall conclusions are applicable more generally.

We also discuss, in tandem, the corresponding issue for ultra-local lattice vector currents. Here
there is an exactly conserved lattice current, but it is not ultra-local, and often it is computationally
simpler to use the ultra-local version. Since the latter current is not conserved, it receives a finite
renormalization, one that can again be determined by imposing an appropriate WTI.

2. Currents and Renormalization Conditions

We consider lattice QCD with N f = 2 Wilson fermions with lattice spacing a. The ultra-local
flavor non-singlet vector and axial currents are related to renormalized currents as follows:

V b
µ,ren = ZV V b

µ,Loc V b
µ,Loc(x) = ψ(x)γµT b

ψ(x) (2.1)

Ab
µ,ren = ZA Ab

µ,Loc Ab
µ,Loc(x) = ψ(x)γµγ5T b

ψ(x) (2.2)

The Z-factors depend on the action as well as on the WTI used to fix them. For simplicity, we work
here and below in the massless limit, attained by sending κ → κc. Since we work only at linear
order in a, we do not encounter the possible Aoki-phase or first-order transition at small masses
induced by discretization errors of O(a2) [2]. This simplification also means that we drop all terms
proportional to am.1

The specific WTI that we use to determine the Z-factors are as follows. For the vector current,
we impose that the pion have the correct “charge”:

〈πb(~p)|V c
0,ren|πd(~p)〉 = ε

bcd2E (2.3)
1In practice, attaining zero quark mass requires an extrapolation, or the use of Schrödinger-functional boundary

conditions as an infrared regulator.
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One must have that ~p 6= 0 in order that E 6= 0 (since we are in the massless limit). The renormal-
ization factor will, in general, depend on ~p.

For the axial current we impose “δAA∼V ” between pion states [1]∫
d~xε

abc
ε

cde〈πd(~p)|
[
Aa

0,ren(y0 + t,~x)−Aa
0,ren(y0− t,~x)

]
Ab

0,ren(y)|πe(~q)〉

= 2iεcde〈πd(~p)|V c
0,ren(y)|πe(~q)〉 . (2.4)

Here we need either ~p or~q (or both) to be non-vanishing for the right-hand-side to be non-zero, and
we choose to take both non-vanishing to avoid infrared divergences. Once we have a renormalized
vector current (which enters on the right-hand-side) we can use this WTI to determine |ZA|. Here
the result can depend not only on the pion momenta but also on the Euclidean time separating
the two axial currents (which traces back to the size of the region over which the axial rotation is
applied).

Other renormalization conditions are sometimes used in practice, but we have chosen these
two examples as they can be analyzed using ChPT. We also note that, in practice, one cannot
consider many choices for the external pion momenta and time separations, due to the associated
computational cost and the degradation of the signal as |~p| increases. In contrast, ChPT allows one
to study all momenta in the chiral regime.

3. Mapping Currents into the Effective Chiral Theory

The required calculation is now clear: map the lattice currents into the effective chiral theory
and then evaluate the matrix elements appearing in the WTI (2.3) and (2.4). The mapping is done,
following [2], in two steps, first from the lattice into the Symanzik effective continuum theory, and
from there into the chiral effective theory. Since ZV and ZA are overall constants to be determined
at the end, the mapping needs to be done for the bare lattice currents.

In the first step, using the symmetries of the lattice theory, one finds [1]:

V b
µ,Loc ' V b

µ,Sym,Loc =
1

Z0
V

(
V b

µ,ct +acV∂νT b
µν ,ct

)
+O(a2) (3.1)

Ab
µ,Loc ' Ab

µ,Sym,Loc =
1

Z0
A

(
Ab

µ,ct +acA∂µPb
ct

)
+O(a2) (3.2)

where the continuum bilinears Oct take their usual forms. This result displays all power-law de-
pendence on a explicitly (here at linear order); a logarithmic dependence still enters through the
implicit dependence of cV,A and Z0

V,A on g(a). Z-factors are needed in these mappings because the
currents V a

µ,ct and Aa
µ,ct are conserved while the lattice currents are not. The superscript indicates

that the Z0
V,A, while containing perturbative contributions to all orders, do not include O(a) terms.

In practice, we know Z0
V,A only approximately, but this does not matter since, as will be seen below,

they cancel once we normalize the currents non-perturbatively.
The mapping of the currents in (3.1-3.2) into Wilson ChPT is more subtle. One cannot simply

take the WChPT action (including O(a) terms) and determine the currents using the Noether pro-
cedure, as done in Ref. [3], because the symmetries are broken explicitly. Instead, we have used
the following two methods.
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• Following continuum ChPT, construct the generating functional, including lattice artefacts
using standard spurion methods, and obtain the currents by taking derivatives with respect to
sources. One must treat the O(1) and O(a) parts of the currents (3.1-3.2) separately.

• Write down the most general currents compatible with the symmetries, and impose appro-
priate WTI by hand.

The first approach was used in Ref. [4], and more fully justified in [6]. We have checked the
analysis using a more general method. The second approach is more direct, and we used it to check
that no subtleties had been overlooked in the first method. We find that both approaches agree.

The resulting mappings are (in agreement with the results of Ref. [4], and dropping here and
henceforth a ubiquitous “+O(a2)”):

V b
µ,ct+acV∂νT b

µν ,ct 'V b
µ,eff = V b

µ,LO

(
1+

4
f 2 âW45cSW〈Σ+Σ

†〉
)

, (3.3)

Ab
µ,ct+acA∂µPb

ct ' Ab
µ,eff = Ab

µ,LO

(
1+

4
f 2 âW45cSW〈Σ+Σ

†〉
)

+4âWAcA∂µ〈T b(Σ−Σ
†)〉, (3.4)

where V a
µ,LO and Aa

µ,LO are the standard, leading-order ChPT currents, Σ contains the pion fields in
the standard way, â = 2W0a, and the WX are unknown low energy coefficients (LECs) associated
with the lattice artifacts. The coupling cSW is the coefficient of the “clover-term” in the Symanzik
action, and, like cV,A, is only known approximately. This is now seen to be unimportant, however,
since it multiplies an unknown LEC. Note that for the vector current the cV term in the Symanzik-
theory current does not lead to an O(a) contribution to the current in WChPT, while the cA term in
the axial current does.

Putting in the overall factors, the renormalized ultra-local vector and axial currents map into
WChPT as

V b
µ,ren '

ZV

Z0
V

V b
µ,eff , Ab

µ,ren '
ZA

Z0
A

Ab
µ,eff . (3.5)

In Ref. [4], the factors of ZV/Z0
V and ZA/Z0

A were set to unity, based on an erroneous argument. In
fact, these factors can differ from unity at O(a), as will be seen shortly.

4. Determining the Renormalization Factors

We now use the mapped currents of (3.5) to evaluate the WTI in WChPT. We work in the
power-counting in which a ∼ p2, so that a tree-level calculation suffices to obtain the terms linear
in a. Evaluating the WTI (2.3) we find the simple result

ZV = Z0
V V b

µ,ren = V b
µ,eff . (4.1)

Hence, no additional O(a) terms are introduced by the current renormalization. We discuss why
this is in Ref. [5]; see also Ref. [4].

For the axial current, the WTI (2.4) gives, after some calculation,

ZA

Z0
A

= 1− 4â
f 2 (W45cSW +WAcA)zA(t) , zA(t) = 1− cosh[t(|~p|− |~q|)]exp[−|t||~p−~q|] . (4.2)
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In contrast to the vector current we do find a non-vanishing correction of O(a). This correction
depends on the separation t between the axial currents and upon the external states, as expected.
Thus, the renormalized ultra-local axial current maps into WChPT as

Ab
µ,ren '

[
1− 4â

f 2 (W45cSW +WAcA)zA(t)
]

Ab
µ,eff . (4.3)

This is our major new result.
We conclude that the a dependence of Ab

µ,eff, derived using symmetries, is supplemented by
an additional discretization error resulting from the application of the normalization condition at
non-zero a. There are three distinct cases (recalling that ~p,~q 6= 0):

1. ~p = ~q. This is the simplest case to implement practically, and leads to zA(t) = 0. Thus
it turns out that, in this case, there are no additional O(a) terms introduced by the current
normalization.

2. ~p parallel to ~q. Then, for |t| � 1/|~p−~q|, the product of cosh and exponential becomes 1/2,
and so zA → 1/2.

3. All other non-vanishing ~p and ~q. Here, for |t| � 1/|~p−~q|, the exponential overwhelms the
cosh and zA → 1.

We stress that in both the second and third cases zA depends on t for non-asymptotic values of t.
In any case, our main point is that the implementation of the renormalization condition leads, in
general, to a non-trivial O(a) correction to the current. This is what was missed in Ref. [4].

Another feature of the result (4.3) is that it depends on the same unknown coefficients as
appear in the unnormalized current (3.4), namely the products W45cSW and WAcA. Thus if one were
to do a fit to multiple physical quantities, incorporating the constraints implied by WChPT so as
to improve the extrapolation to the continuum limit, the inclusion of the correctly normalized axial
current would not increase the number of unknown parameters.

5. Applications

Expanding the renormalized axial current we obtain the tree-level result for the pion decay
constant:

fπ,tree = f
(

1+
4
f 2 â(W45cSW +WAcA) [2− zA(t)]

)
. (5.1)

This gives the form of the discretization errors expected in a lattice calculation of fπ . We stress
once again that the result depends on the choice of renormalization condition [through zA(t)].
While expected, it is still striking to see such a dependence explicitly.

Various comments are in order. First, at this order in ChPT, the continuum result is simply f ,
which is correctly reproduced. Second, a consistency condition on the calculation is that the LECs
can appear in physical quantities only in certain “physical” combinations [4], and W45cSW +WAcA

is indeed such a combination. Third, the choice of underlying fermion action enters through the
values of cSW and cA, with the choice of the ultra-local current also affecting cA. If only the action is
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improved then cSW = 0, and one still finds, as expected, an O(a) term because cA 6= 0. If both action
and current are improved, then one finds the expected absence of the O(a) term—independent of
the choice of the details of the renormalization condition. Finally, we note that in comparison with
previous results in the literature, Ref. [3] misses both WA and zA terms, while Ref. [4] effectively
assumes that zA = 0.

We have also done a one-loop calculation and find

fπ,1−loop = f
(

1+
â
f 2W̃A1−

1
16π2 f 2

[
1+

â
f 2W̃A2

]
M2

π ln
M2

π

µ2 +
8
f 2 M2

π

[
L45 +

â
f 2W̃A3

])
(5.2)

with W̃A3 being a new unknown LEC while

W̃A1 = 4(W45cSW +WAcA)[2− zA(t)] W̃A2 = 4(W45cSW +WAcA)[1− zA(t)] (5.3)

Note that these two coefficients depend only on the physical combination W45cSW +WAcA of LEC,
as expected.

Our one-loop result correctly reproduces the continuum result of Gasser and Leutwyler [7]
in the limit a → 0. At non-zero lattice spacing, however, there appear additional terms of O(a),
O(aM2

π ) and O(aM2
π lnM2

π ). Quite generally, the coefficient of the chiral logarithm receives a cor-
rection in form of the factor [1+ âW̃A2/ f 2], so it not only depends on f and the number of flavors,
but also on the (non-universal) lattice artifacts encoded in the coefficient W̃A2 [8]. An exception
is the third case discussed in the previous section with zA(t) = 1. Here W̃A2 = 0 and the chiral
logarithm is free of O(a) corrections.

Note that the combination L45 of Gasser-Leutwyler coefficients enters the one-loop result in
form of the lattice spacing dependent combination Leff

45(a) = L45 + âW̃A3/ f 2. In order to obtain the
physically interesting part L45 one has to extrapolate to the continuum limit.

We close with a final remark on formula (5.2). For a consistent result to a given order one
has to specify a power-counting scheme, and the literature usually distinguishes two regimes: (i)
the GSM regime with m ∼ aΛ2

QCD and (ii) the LCE regime with m ∼ a2Λ3
QCD. Here GSM stands

for generically small quark masses [4] and LCE for large cut-off effects [9]. Equation (5.2) is
only a partial next-to-leading order (NLO) result for the LCE regime since we ignored the O(a2)
corrections in the effective action [10] and the effective currents. The NLO result for the GSM
regime, however, is obtained from (5.2) by dropping the corrections proportional to W̃A2 and W̃A3,
which are of next-to-next-to-leading order in this regime.

6. Conclusions

We have reconsidered the construction and matching of the vector and axial currents in WChPT.
The explicit chiral symmetry breaking of Wilson fermions compels us to take two aspects into ac-
count which are not present in continuum ChPT:

1. The local lattice currents are not conserved, and in general they do not map onto the con-
served currents in WChPT. In particular, the WChPT currents are not obtained by the Noether
procedure, because the currents in the Symanzik theory have O(a) corrections which are not
related to the effective action.
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2. The proper matching of the currents has to take into account the finite renormalization of
the local lattice currents. The same renormalization conditions that have been employed
for the lattice currents must be imposed on the effective currents in WChPT. Depending on
the particular choice for the renormalization conditions the expressions for the renormalized
currents differ by terms of O(a).

A direct consequence is that WChPT predictions for matrix elements of the currents also depend
on the renormalization condition one has adopted. This is not a flaw but rather reflects the fact that
the lattice data differs too depending on the particular condition one has chosen. What we find is
that this dependence enters at O(a), but that it does not introduce any new LECs.

Our results emphasize the perhaps rather obvious general point that non-perturbative renor-
malization conditions generically introduce additional discretization errors. These must be (and in
practice usually are being) accounted for when extrapolating to the continuum limit.
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