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smallmq regime, our result ofχt andc4 both agree with the chiral effective theory.
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1. Introduction

In quantum chromodynamics (QCD), the topological susceptibility (χt ) is the most crucial
quantity to measure the topological charge fluctuations of the QCD vacuum, which plays an im-
portant role in breaking theUA(1) symmetry. Theoretically,χt is defined as

χt =

∫

d4x〈ρ(x)ρ(0)〉 =

〈

Q2
t

〉

Ω
, Qt ≡

∫

d4xρ(x), (1.1)

whereΩ is the volume of the system,Qt is the topological charge (which is an integer for QCD),
and ρ(x) is the topological charge density,ρ(x) = 1

32π2 εµνλσ tr[Fµν(x)Fλσ (x)]. Using the chiral
perturbation theory (ChPT), Leutwyler and Smilga [1] obtained the following relation at the tree
level,

χt =

{

Σ
(

m−1
u +m−1

d

)−1
, Nf = 2,

Σ
(

m−1
u +m−1

d +m−1
s

)−1
, Nf = 3,

(1.2)

wheremu, md, andms are the quark masses, andΣ is the chiral condensate. This implies that in
the chiral limit (mu → 0), the topological susceptibility is suppressed due to internal quark loops.
Most importantly, (1.2) provides a viable way to extractΣ from χt in the chiral limit. Recently, the
topological susceptibility has been derived to the one-loop order in ChPT for an arbitrary number
of flavors [2, 3]. It would be interesting to see whether theχt measured in lattice QCD with exact
chiral symmetry would agree with ChPT to the one-loop order.This will be addressed in our
forthcoming paper. Besidesχt , it is also interesting to determine the second normalized cumulant,

c4 = −
1
Ω

[

〈Q4
t 〉−3〈Q2

t 〉
2] , (1.3)

which is related to the leading anomalous contribution to the η ′−η ′ scattering amplitude in QCD,
as well as the dependence of the vacuum energy on the vacuum angle θ . Recentlyc4 has been
derived in ChPT (at the tree-level) for an arbitrary number of flavors [2, 3],

c4 =

{

−Σ
(

m−3
u +m−3

d

)(

m−1
u +m−1

d

)−4
, Nf = 2,

−Σ
(

m−3
u +m−3

d +m−3
s

)(

m−1
u +m−1

d +m−1
s

)−4
, Nf = 3.

(1.4)

In this work, we investigate to what extentχt andc4 in lattice QCD with exact chiral symmetry
would agree with the ChPT at the tree level, Eqs. (1.2) and (1.4), and determineΣ from our data of
χt . In principle, one can also extractΣ from c4, however, this would require much higher statistics
than that ofχt .

From Eqs. (1.1) and (1.3),χt and c4 can be determined by counting the number of gauge
configurations in each topological sector. Obviously, if one fixes the topology at the trivial sector
with Qt = 0, thenχt = c4 = 0. However, even for a topologically-trivial gauge configuration, it
may possess non-trivial topological excitations in sub-volumes. Thus, one can still measureχt and
c4 using the correlation of the topological charges of sub-volumes. In general, for any topological
sector withQt , using saddle point expansion on the QCD partition functionin a finite volume, it
can be shown that [4]

lim
|x|→∞

〈ρ(x)ρ(0)〉 =
1
Ω

(

Q2
t

Ω
− χt −

c4

2χt Ω

)

+O(Ω−3). (1.5)
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However, it is difficult to extractρ(x) andQt unambiguously from the gauge link variables, due to
their rather strong fluctuations.

To circumvent this difficulty, one may consider the Atiyah-Singer index theorem [5]

Qt = n+ −n− = index(D), (1.6)

wheren± is the number of zero modes of the massless Dirac operatorD ≡ γµ(∂µ + igAµ) with ±

chirality. SinceD is anti-Hermitian and chirally symmetric, its nonzero eigenmodes must come in
complex conjugate pairs with zero chirality. Thus one can obtain the identity

n+−n− =
∫

d4x mtr[γ5(D +m)−1(x,x)], (1.7)

by spectral decomposition. In view of (1.6) and (1.7), one can regardm tr[γ5(D + m)−1(x,x)] as
topological charge density, to replaceρ(x) in the measurement ofχt .

For lattice QCD, it is well-known that the overlap Dirac operator [6, 7] in a topologically
non-trivial gauge background possesses exact zero modes (with definite chirality) satisfying the
Atiyah-Singer index theorem. Thus the topological charge density can be defined as

ρm(x) = m tr[γ5(Dc +m)−1
x,x ], (1.8)

where(Dc + m)−1 is the valence quark propagator with quark massm. Hereρm(x) is justified to
be topological charge density, since it can be shown that∑x ρm(x) = n+ −n−, which is similar to
its counterpart in continuum, (1.7). However, on a finite lattice, it is contaminated bymπ , mη ′ and
any states which can couple to〈ρm(x)ρm(0)〉. An alternative is to consider the correlator of the
flavor-singlet pseudoscalar mesonη ′ [4]

lim
|x1−x2|�1

m2
q

〈

η ′(x1)η ′(x2)
〉

Q = −
χt

Ω

(

1−
Q2

χtΩ
+

c4

2χ2
t Ω

)

+O(e−mη′ |x1−x2|)+O(Ω−3), (1.9)

which is equal to the disconnected part〈ρm(x1)ρm(x2)〉Q at large separation, but it tends to the
asymptotic value faster than the latter since it only couples to the states containingη ′. Then
the time-correlation function ofη ′ is fitted toA+ B(e−Mt + e−M(T−t)) to obtain the constantA =
1

m2
q

1
T

(

Q2
t

Ω − χt −
c4

2χt Ω

)

, and from which to extractχt provided that|c4| � 2χ2
t Ω. This was how we

determined the topological susceptibility in two-flavor lattice QCD with fixed topology [8, 9].
However, it was unclear to what extent the assumption|c4| � 2χ2

t Ω was satisfied. To elim-
inate this constraint, we compute the 4-point correlator ofη ′, as well as the 2-point correlator.
Theoretically, in a fixed topology, the former behaves as [4]

lim
|xi−xj |�1

m4
q〈η ′(x1) · · ·η ′(x4)〉Q =

3χ2
t

Ω2

(

1−
Q2

χtΩ
+

c4

χ2
t Ω

)2

+O(e−mη′ |xi−xj |)+O(Ω−4). (1.10)

From (1.9) and (1.10), one can solve forχt andc4 (or equivalently, the parametery)

χt =
Q2

Ω
+ Ω

(

2k2−
√

k4/3
)

, (1.11)

y ≡
c4

2χ2
t Ω

= −

(

√

k4/3−k2

)

√

k4/3−2k2

(

1−
Q2

χtΩ

)

, (1.12)
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where−k2 andk4 are the asymptotic values of 2-point and 4-point correlators at large separation.
It is interesting to note that if one neglects they term in (1.9) and (1.10), they reduce to

χt '
Q2

Ω
+ Ωk2, χt '

Q2

Ω
+ Ω

√

k4/3, (1.13)

which provide two independent estimates ofχt . In other words, if|y| � 1, then (1.11) and (1.13)
all give compatible results forχt .

At this point, we note that (1.9) and (1.10) are only applicable for all flavors having the same
massmq. To remedy this problem, we introduce the “topological”η ′ interpolating operator

η ′
T(x) =

1
Nf

Nf

∑
f=1

mf q̄f (x)γ5qf (x), (1.14)

and transcribe (1.9) and (1.10) to

lim
|x1−x2|�1

〈

η ′
T(x1)η ′

T(x2)
〉

Q = −
χt

Ω

(

1−
Q2

χtΩ
+

c4

2χ2
t Ω

)

+ · · · , (1.15)

lim
|xi−xj |�1

〈η ′
T(x1)η ′

T(x2)η ′
T(x3)η ′

T(x4)〉Q =
3χ2

t

Ω2

(

1−
Q2

χtΩ
+

c4

χ2
t Ω

)2

+ · · · (1.16)

The time-correlation functions of 2-point and 4-point correlators ofη ′
T can be measured as

Cη ′
T
(t) =

1
L3T

T

∑
u=1

∑
~xi

〈

η ′
T(~x2,u+ t)η ′

T(~x1,u)
〉

, (1.17)

C4η ′
T
(t) =

1
L3T

T

∑
u=1

∑
~xi

〈

η ′
T(~x4,u+3t)η ′

T(~x3,u+2t)η ′
T(~x2,u+ t)η ′

T(~x1,u)
〉

. (1.18)

At large t, their asymptotic values are−k2 and k4, which are inserted into (1.11) and (1.12) to
obtainχt andc4.

2. Lattice Setup

Our simulations are caried out on the lattices 163 × 32 (Nf = 2) and 163 × 48 (Nf = 2+ 1),
at a lattice spacing∼ 0.11 fm [10, 11]. For the gluon part, we use the Iwasaki action atβ =
2.30, together with unphysical Wilson fermions and associated twisted-mass ghosts [12]. The
unphysical degrees of freedom generate a factor det[H2

w(−m0)/(H2
w(−m0)+ µ2)] in the partition

function (with m0 = 1.6 andµ = 0.2) that suppresses the near-zero eigenvalue ofHw(−m0) and
thus makes the numerical operation with the overlap operator substantially faster. Furthermore,
since the exact zero eigenvalue is forbidden, the global topological change is preserved during the
molecular dynamics evolution of the gauge field.

We choose the sea quark massesmu in the rangems/6 - ms. For Nf = 2, we take six sea
quark massmu(d) values: 0.015, 0.025, 0.035, 0.050, 0.070, and 0.100, whilefor Nf = 2+ 1
with ms = 0.080/0.100, we take five sea quark massmu(d) values: 0.015, 0.025, 0.035, 0.050,
and 0.080/0.100. After discarding 500 trajectories for thermalization, we accumulate 10000(Nf =
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mu = 0.015, ms = 0.100
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(a) (b)

Figure 1: Low-mode saturation of (a) the 2-point functionCη ′
T
(t) (b) the 4-point functionC4η ′

T
(t)

2)/2500(Nf = 2+1) trajectories in total for each sea quark mass. In the calculation of χt , we take
one configuration every 20(Nf = 2)/5(Nf = 2+ 1) trajectories, thus we have 500 configurations
for eachmq. For each configuration, 50(Nf = 2)/80(Nf = 2+1) pairs of lowest-lying eigenmodes
of the overlap-Dirac operatorD(0) are calculated using the implicitly restarted Lanczos algorithm
and stored for the later use. In these calculations, the better accuracy ofO(10−12) is enforced for
the sign function by increasing the number of poles in the rational approximation.

3. Results

In practice, we use 50/80 pairs of low-lying eigenmodes of the overlap operator to evaluate
the 2-point and 4-point time-correlation functions ofη ′

T . Thus it is crucial to check whether these
low-lying eigenmodes suffice to saturateCη ′

T
(t) andC4η ′

T
(t) respectively. In Fig. 1, we plotCη ′

T
(t)

andC4η ′
T
(t) for mua = 0.015 andmsa = 0.100, versus the number of eigenmodes (nev) 20, 40, 60,

and 80 respectively. Obviously, bothCη ′
T
(t) andC4η ′

T
(t) are well saturated with 80 eigenmodes for

the time range 15≤ t ≤ 24 and 9≤ t ≤ 14 respectively. The low-mode saturation also holds for all
sea quark masses, forNf = 2 andNf = 2+1.

In Figs. 2-4, we plot the values ofa4χt anda4c4 versus the sea quark massmqa, together with
the values ofχt obtained from the 2-point and 4-point functions (1.13) respectively. Evidently, the
values ofχt from (1.11) and (1.13) are in good agreement with one another.

For the smallest four quark masses, 0.015, 0.025, 0.035, and0.050, the data points ofa4χt are
well fitted by the Leutwyler-Smilga formula (1.2). Our results ofa3Σ are:

a3Σ =











0.00299(9), Nf = 2,

0.00227(8), Nf = 2+1 (ms = 0.080),
0.00222(10), Nf = 2+1 (ms = 0.100).

(3.1)

In order to convertΣ to that in theMS scheme, we calculate the renormalization factor
ZMS

m (2 GeV) using the non-perturbative renormalization technique through the RI/MOM scheme,

5
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Figure 2: Topological susceptibilitya4χt anda4c4 versus sea quark massmqa for 2-flavor lattice QCD with
fixed topological chargeQt = 0.

msa = 0.080

mqa
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Figure 3: Topological susceptibilitya4χt anda4c4 versus sea quark massmqa for (2+1)-flavor lattice QCD
with fixed topological chargeQt = 0, for ms = 0.080.

and our results are [13]

ZMS
m (2 GeV) =

{

0.806(12)(24), Nf = 2,

0.804(10)(25), Nf = 2+1.
(3.2)

With a−1 = 1670(40) MeV (Nf = 2) anda−1 = 1833(12) MeV (Nf = 2+ 1) determined with
r0 = 0.49 fm [11], the values ofΣ are transcribed to

[

ΣMS(2 GeV)
]1/3

=











259(7)(8)MeV, Nf = 2,

259(7)(6)MeV, Nf = 2+1 (ms = 0.080),
258(8)(7)MeV, Nf = 2+1 (ms = 0.100),

(3.3)
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msa = 0.100
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Figure 4: Topological susceptibilitya4χt anda4c4 versus sea quark massmqa for (2+1)-flavor lattice QCD
with fixed topological chargeQt = 0, for ms = 0.100.

which are in good agreement with that extracted fromχt = 〈Q2
t 〉/Ω with Qt determined by the

spectral flow method for the 2+1 flavors QCD configurations generated by the RBC and UKQCD
Collaborations with domain-wall fermion [14]. Also, they are in good agreement with our previous
results extracted fromχt in 2-flavor QCD [8, 9], and from the low-lying eigenvalues in theε-regime
[16, 15]. The errors represent a combined statistical error(a−1 andZMS

m ) and the systematic error
respectively. Since the calculation is done at a single lattice spacing, the discretization error cannot
be quantified reliably, but we do not expect much larger errorbecause our lattice action is free from
O(a) discretization effects.

Next we turn to the second normalized cumulant (c4). For the smallest four (three for the case
Nf = 2) quark masses, 0.015, 0.025, 0.035, and 0.050, the data points ofa4c4 can be fitted by the
ChPT formula (1.4) at the tree level. Our results ofa3Σ are:

a3Σ =











0.0018(16), Nf = 2,

0.0030(9), Nf = 2+1 (ms = 0.080),
0.0025(12), Nf = 2+1 (ms = 0.100),

(3.4)

which are consistent with those (3.1) extracted fromχt , in spite of very large error bars.

4. Concluding remark

In this work, we obtain the topological susceptibilityχt and the second normalized moment
c4, in 2-flavor and (2+1)-flavor QCD, from a lattice calculationof 2-point and 4-point correlators
at a fixed global topological chargeQt = 0. In the smallmq regime, our results ofχt andc4 both
agree with ChPT (at the tree level). This asserts that the topologically non-trivial excitations are in
fact locally active in the QCD vacuum, even when the global topological charge is zero. We will
use the values ofχt we have determined to remove the artifacts in any physical observables due
to the fixed topology in a finite volume [17, 4]. Our next task isto investigate to what extent our
results ofχt would agree with the ChPT to the one-loop order [2, 3].
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