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1. Introduction

In quantum chromodynamics (QCD), the topological susbéiyi ( x;) is the most crucial
guantity to measure the topological charge fluctuation$efQCD vacuum, which plays an im-
portant role in breaking thea(1) symmetry. Theoreticallyy; is defined as

_ d4 _ <Qt2> _ 4
Xe= [ dx{p(x)p(0)) =5~ Q= [dxpX), (1.2)
whereQ is the volume of the systenqy is the topological charge (which is an integer for QCD),
andp(x) is the topological charge densitg(X) = 52 &,uaotr[Fuv (X)Fag(X)]. Using the chiral
perturbation theory (ChPT), Leutwyler and Smilga [1] ob&al the following relation at the tree
level,

T | _
" { Z(mlileril) g1 v (1.2
T(mpt+mgt+mgt) T Ng =3,
wheremy,, myq, andmg are the quark masses, ahds the chiral condensate. This implies that in
the chiral limit (n, — 0), the topological susceptibility is suppressed due terirdl quark loops.
Most importantly, (1.2) provides a viable way to extradrom x; in the chiral limit. Recently, the
topological susceptibility has been derived to the ong-lomler in ChPT for an arbitrary number
of flavors [2, 3]. It would be interesting to see whether fheneasured in lattice QCD with exact
chiral symmetry would agree with ChPT to the one-loop ordEhis will be addressed in our
forthcoming paper. Besideg, it is also interesting to determine the second normalizedutant,

o= g (G 3@, (13)

which is related to the leading anomalous contribution &xth— n’ scattering amplitude in QCD,
as well as the dependence of the vacuum energy on the vacuglménRecentlyc, has been
derived in ChPT (at the tree-level) for an arbitrary numiddtavors [2, 3],

- { 2 (m 4 mg) (gt mg) Nr =2,
Cs= - - - - _ a4 (1.4)
—Z(mg®+mg®+mg ) (mpt+mgt+mgt) T Np =3

In this work, we investigate to what extextandc, in lattice QCD with exact chiral symmetry
would agree with the ChPT at the tree level, Egs. (1.2) ant),(dnd determin& from our data of
X:. In principle, one can also extraktfrom c4, however, this would require much higher statistics
than that ofy;.

From Egs. (1.1) and (1.3); andc4 can be determined by counting the number of gauge
configurations in each topological sector. Obviously, iédixes the topology at the trivial sector
with Q; = 0, theny; = ¢4 = 0. However, even for a topologically-trivial gauge configfimn, it
may possess hon-trivial topological excitations in subsvees. Thus, one can still measygeand
¢4 using the correlation of the topological charges of sulwwvas. In general, for any topological
sector withQ;, using saddle point expansion on the QCD partition funciioa finite volume, it
can be shown that [4]

. 2 Cyq _
im (0 = 5 (B x5 ) +0(@%) (L5)
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However, it is difficult to extracp(x) andQ; unambiguously from the gauge link variables, due to
their rather strong fluctuations.
To circumvent this difficulty, one may consider the Atiyaim@er index theorem [5]

Qi =n;—n_=index 2), (1.6)

wheren.. is the number of zero modes of the massless Dirac opefatery, (d,, +igA;) with £
chirality. SinceZ is anti-Hermitian and chirally symmetric, its nonzero eigedes must come in
complex conjugate pairs with zero chirality. Thus one cataiolthe identity

n,—n_ = /d4x mtr[ys(2 +m)~1(x,x)], (1.7)

by spectral decomposition. In view of (1.6) and (1.7), one eayardm tr[ys(Z +m)~1(x,x)] as
topological charge density, to replapéx) in the measurement of.

For lattice QCD, it is well-known that the overlap Dirac ogkr [6, 7] in a topologically
non-trivial gauge background possesses exact zero modisdgfinite chirality) satisfying the
Atiyah-Singer index theorem. Thus the topological chargesity can be defined as

Pm(X) = mtr[ys(Dc+ m), 1], (1.8)

where (D¢ + m)~1 is the valence quark propagator with quark massHere py(x) is justified to
be topological charge density, since it can be shown Yhgin(x) = n. —n_, which is similar to
its counterpart in continuum, (1.7). However, on a finité¢idat it is contaminated bgn,;, m,. and
any states which can couple tpm(X)pm(0)). An alternative is to consider the correlator of the
flavor-singlet pseudoscalar mesgh[4]

2
im0’ 0a)n'(e))q = a (l_ )%Q " 2529) +o(e ™l 1 0(Q73), (1.9)
which is equal to the disconnected pgpin(X1)Pm(X2))q at large separation, but it tends to the
asymptotic value faster than the latter since it only cosipte the states containing’. Then
the time-correlation function af’ is fitted toA+ B(e "Mt 4-e"M(T-1) to obtain the constar =
11 %tz — Xt — 2;%) and from which to extrack; provided thaics| < 2x?Q. This was how we
determined the topological susceptibility in two-flavattite QCD with fixed topology [8, 9].

However, it was unclear to what extent the assumptiah< 2x?Q was satisfied. To elim-
inate this constraint, we compute the 4-point correlatongfas well as the 2-point correlator.
Theoretically, in a fixed topology, the former behaves as [4]

im i’ ()1’ () :%(1—i+i>2+ﬁ<e%"‘Xj'>+ﬁ<n4> (1.10)
|><a*><j|>>1mq T a2 XQ  x2Q h

From (1.9) and (1.10), one can solve jgrandc, (or equivalently, the parametgy

2
X = 240 (2 Vif3). (1.12)

o _ (VEB-k) (-2,

- XtQ

y

2¢Q  ka/3-2k (112
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where—k; andk, are the asymptotic values of 2-point and 4-point corretattiarge separation.
It is interesting to note that if one neglects thierm in (1.9) and (1.10), they reduce to
& &
Xt =~ §+Qk2, Xt:6+§2\/k4/3, (1.13)
which provide two independent estimatesypf In other words, ify| < 1, then (1.11) and (1.13)
all give compatible results fgx;.

At this point, we note that (1.9) and (1.10) are only appliedbr all flavors having the same
massmg. To remedy this problem, we introduce the “topological’interpolating operator

1N ¢
= = S med (0yea (%), 1.14
N; r; 4 ()0 (x) (1.14)
and transcribe (1.9) and (1.10) to
. o (@ e ),

\X11'§3>>1<”T(X1)”T (x2)>Q = 0 (l X0 + 2th9> to (1.15)

- 3¢ Q| >2
| / / / ! = At (< L 1.16
|>q_|>f,r|]>>1<r’T (x1)Nt (%2)nT (X3)NT (X4))Q 02 ( xQ ™ X2Q t ( )

The time-correlation functions of 2-point and 4-point ebators of; can be measured as

.

Cr (1) = (37 3. 3 (M (0,0 + 04 (30,0, (117
U=1'%
-

Capy (1) = % > > (17 (Ra,u+30)n7 (Re,u+ 2007 (X, u+ )07 (%,u)) . (1.18)
u=1x

At larget, their asymptotic values arek, andky, which are inserted into (1.11) and (1.12) to
obtainx; andcs.

2. Lattice Setup

Our simulations are caried out on the lattices ¥@82 (N; = 2) and 16 x 48 (N; = 2+ 1),
at a lattice spacing~ 0.11 fm [10, 11]. For the gluon part, we use the Iwasaki actiof at
2.30, together with unphysical Wilson fermions and astediawisted-mass ghosts [12]. The
unphysical degrees of freedom generate a factgHgét-mg)/(H2(—mp) + p?)] in the partition
function (withmp = 1.6 andu = 0.2) that suppresses the near-zero eigenvalud,g¢f-mp) and
thus makes the numerical operation with the overlap opegrtbstantially faster. Furthermore,
since the exact zero eigenvalue is forbidden, the globallogjical change is preserved during the
molecular dynamics evolution of the gauge field.

We choose the sea quark massgsin the rangems/6 - ms. For Ny = 2, we take six sea
quark massm,q values: 0.015, 0.025, 0.035, 0.050, 0.070, and 0.100, wWoileNs = 2+ 1
with ms = 0.080/0.100, we take five sea quark masg, values: 0.015, 0.025, 0.035, 0.050,
and 0.080/0.100. After discarding 500 trajectories forrtadization, we accumulate 10000 =



Topological quantum fluctuations T.H. Hsieh

2.0e7 2.0e-9
m,=0.015, m,=0.100
=0.015 =0. u '
m, , m;=0.100 1509 ]
00 I
i :
3 %% % 1.0e-9
5 2T %éﬁé P % 5.0e-40f % g b beay
© Tespgegssasiisse % %
4067 00 ¢ % i
o nev=80 T o nev=380
2 nev=60 -5,0e-40/ 2 nev=60
-6.0e7 o~ nev=40 o nev=40
“- nev=20 « nev=20
; ‘ ‘ ‘ -1.0e9 ‘ : : : : :
5 10 15 20 2 4 6 8 10 12 14
t t
(@) (b)

Figure1: Low-mode saturation of (a) the 2-point functiGp, (t) (b) the 4-point functiorC,y, (t)

2)/250QN¢ = 2+ 1) trajectories in total for each sea quark mass. In the caloulaf x;, we take
one configuration every 28 = 2)/5(N¢ = 2+ 1) trajectories, thus we have 500 configurations
for eachmy. For each configuration, %8s = 2) /80(N¢ = 2+ 1) pairs of lowest-lying eigenmodes
of the overlap-Dirac operatd(0) are calculated using the implicitly restarted Lanczos stigm
and stored for the later use. In these calculations, theratturacy oD(1012?) is enforced for
the sign function by increasing the number of poles in themat approximation.

3. Results

In practice, we use 50/80 pairs of low-lying eigenmodes ef akierlap operator to evaluate
the 2-point and 4-point time-correlation functionsrgf. Thus it is crucial to check whether these
low-lying eigenmodes suffice to saturdlg (t) andCyp: (t) respectively. In Fig. 1, we plat,, (t)
andC4,,+ (t) for mya = 0.015 andmsa = 0.100, versus the number of eigenmodes (nev) 20, 40, 60,
and 80 respectively. Obviously, baih, (t) andCyp; (t) are well saturated with 80 eigenmodes for
the time range 15Xt < 24 and < t < 14 respectively. The low-mode saturation also holds for all
sea quark masses, fl =2 andN; =2+ 1.

In Figs. 2-4, we plot the values af'x; anda*c, versus the sea quark masga, together with
the values ofx; obtained from the 2-point and 4-point functions (1.13) extpely. Evidently, the
values ofyx; from (1.11) and (1.13) are in good agreement with one another

For the smallest four quark masses, 0.015, 0.025, 0.035).860, the data points af x; are
well fitted by the Leutwyler-Smilga formula (1.2). Our resubfa3s are:

0.002999), N =2,
a®s =< 0.002278), N;=2+1(ms=0.080), (3.1)
0.0022210), Nf = 2+ 1 (ms = 0.100).

7In order to convert to that in theMS scheme, we calculate the renormalization factor
ZMS(2 GeV) using the non-perturbative renormalization techniqueugh the RI/MOM scheme,
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Figure 2: Topological susceptibilita*x; anda®c, versus sea quark masga for 2-flavor lattice QCD with

fixed topological charg€; = 0.
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Figure 3: Topological susceptibilitg*x; anda’*c, versus sea quark massa for (2+1)-flavor lattice QCD
with fixed topological charg®; = 0, for ms = 0.080.

and our results are [13]

S { 0.806(12)(24), N = 2, (3.2)

MS
Z 2GeV) =
m (2 GeV) 0.804(10)(25), Ny =2+ 1.

With a-! = 167040) MeV (Ns = 2) anda—! = 183312) MeV (Nf = 2+ 1) determined with
ro = 0.49 fm [11], the values ok are transcribed to

2597)(8)MeV, N = 2,
2597)(6)MeV, Ni = 2+ 1 (ms = 0.080),
258(8)(7)MeV, Ni = 2+ 1 (mg = 0.100),

sMS(2 Gev)]l S (3.3)
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Figure 4: Topological susceptibilitg*x; anda*cs versus sea quark masga for (2+1)-flavor lattice QCD
with fixed topological charg®; = 0, for mg = 0.100.

which are in good agreement with that extracted frgm= (Q?)/Q with Q; determined by the
spectral flow method for the 2+1 flavors QCD configurationsegated by the RBC and UKQCD
Collaborations with domain-wall fermion [14]. Also, thegedn good agreement with our previous
results extracted frorg; in 2-flavor QCD [8, 9], and from the low-lying eigenvalues e€-regime
[16, 15]. The errors represent a combined statistical €erof andzm_s) and the systematic error
respectively. Since the calculation is done at a singlettpacing, the discretization error cannot
be quantified reliably, but we do not expect much larger dremause our lattice action is free from
O(a) discretization effects.

Next we turn to the second normalized cumulan).(For the smallest four (three for the case
Nf = 2) quark masses, 0.015, 0.025, 0.035, and 0.050, the datts pda‘*cs can be fitted by the
ChPT formula (1.4) at the tree level. Our results#¥ are:

0.001§16), Nf =2,
a®s = { 0.00309), Ni=2+1(ms=0.080), (3.4)
0.002512), Ni = 2+ 1 (ms = 0.100),

which are consistent with those (3.1) extracted fogmin spite of very large error bars.

4. Concluding remark

In this work, we obtain the topological susceptibility and the second normalized moment

C4, in 2-flavor and (2+1)-flavor QCD, from a lattice calculatioh2-point and 4-point correlators
at a fixed global topological chargg = 0. In the smalim, regime, our results of; andc, both
agree with ChPT (at the tree level). This asserts that th@dgjally non-trivial excitations are in
fact locally active in the QCD vacuum, even when the globpbtogical charge is zero. We will
use the values of; we have determined to remove the artifacts in any physics¢isables due
to the fixed topology in a finite volume [17, 4]. Our next taskasnvestigate to what extent our
results ofy; would agree with the ChPT to the one-loop order [2, 3].
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