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Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field

theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral

condensateΣ in the chiral limit. Here we consider the 2-flavour Schwingermodel, where this

assumption does not hold. We simulated this model with dynamical overlap hypercube fermions,

and enteredterra incognitaby analysing this Dirac spectrum. The usual RMT prediction for the

unfolded level spacing distribution in a unitary ensemble is confirmed to a high precision. The

microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation

is a density of the lowest eigenvalueλ1 which increases∝ λ 1/3
1 . That would correspond to a

scale-invariant parameter∝ λV3/4, which is, however, incompatible with our data. Instead we

observe to high precision a scale-invariant parameterz∝ λV5/8. This surprising result implies a

microscopic spectral density∝ λ 3/5
1 , which still remains to be understood in the light of RMT.
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1. Dirac spectra and Random Matrix Theory

Random Matrix Theory (RMT) has been applied extensively to predict the microscopic spec-
tral densities of Dirac operators in fermionic quantum fieldtheories. These predictions were well
confirmed, first with staggered fermions restricted to the sector of topological chargeν = 0 [1], and
later with Ginsparg-Wilson fermions also for charged topological sectors [2, 3]. These applications
referred to the case of afinite chiral condensateΣ = −〈ψ̄ψ〉 in the chiral limit of fermion mass
m→ 0, which may occur spontaneously (as in QCD), or due to an anomaly (as in the 1-flavour
Schwinger model). In this case the microscopic spectrum displays a plateau near zero; its value is
directly related toΣ by the Banks-Casher formula (in finite volume the plateau is slightly shifted
away from zero). In theε-regime RMT predicts in addition a wiggle structure superimposed on
this plateau, which does in fact agree with numerical data. Matching them to the RMT curves
determinesΣ as the only free parameter — this is a neat way to evaluateΣ.

There are also models withΣ = 0, but that situation is hardly explored by RMT. It occurs
for instance in systems of fermions interacting through Yang-Mills gauge theory above the critical
temperature of the chiral phase transition. There are numerical studies and conjectures about it
[4, 5], but the features of such spectra remain controversial.

In addition there are models withΣ(m→ 0) = 0 even at zero temperature. This is the case for
the2-flavour Schwinger model,which we are going to discuss here. We simulated this model with
dynamical Ginsparg-Wilson fermions[6]. Here we present our observations on its Dirac spectrum,
which has been completely unexplored so far.

First we review the model and the analytical predictions forΣ. Next we sketch our lattice
formulation and its simulation. Then we present theunfolded level spacing distribution, which
agrees accurately with the generic RMT prediction for the unitary ensemble. As the main subject
of this report, we then focus on the probability density of the leading non-zero Dirac eigenvalue
λ1, where we reveal a surprising result. Thescale-invariant parameter— a rescaled eigenvalue in
finite volume — does not agree with the obvious conjecture, which is based on the critical exponent
δ derived in the literature. The microscopic spectrum does increase without a plateau, but its slope
follows anunexpected power law.Finally we also consider the bulk eigenvalues.

2. The chiral condensate in the Schwinger model

The Schwinger model corresponds to QED ind = 2, given by the Lagrangian

L (Ψ̄,Ψ,Aµ) = Ψ̄(x)
[

γµ(i∂µ +gAµ)+m
]

Ψ(x)+
1
2

Fµν(x)Fµν(x) . (2.1)

For Nf degenerated fermion flavours of massm≪ g, a bosonised form of the Schwinger model
leads to the prediction [7],

Σ(m) ∝ m1/δ , δ =
Nf +1
Nf −1

. (2.2)

• In the quenched case (formallyNf = 0), the divergence ofΣ(m→ 0) agrees with simulation
results [8].

• For Nf = 1 — the original version of the Schwinger model — one obtains afinite value
Σ(m→ 0) = eγ/(2π3/2) due to the axial anomaly (γ is Euler’s constant) [9].
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• The explicit prediction forNf = 2 readsΣ(m) ≃ 0.38m1/3 [10].
A numerical study with Domain Wall Fermions on a 162×6 lattice measuredΣ in the range
m= 0.1. . .0.3, and a fit in this regime suggestedΣ(m) ∝ m0.388(68) [11].

3. Lattice formulation and simulation of the 2-flavour Schwinger model

In our study, we use a lattice formulation with compact link variablesUµ ,x ∈ U(1) and the
plaquette gauge action. For the fermions we apply theoverlap hypercube Dirac operator,

DovHF(m) =
(

1− m
2

)

D(0)
ovHF+m , D(0)

ovHF = 1+(DHF−1)/

√

(D†
HF−1)(DHF−1) . (3.1)

DHF(U) is a hypercube fermion operator [12]: it is truncated perfect, and thus by construction
approximately chiral [13]. In eq. (3.1) it is inserted into the overlap formula [14], which restores
exact (lattice modified) chirality [15]. The spectrum ofD(0)

ovHF is located on a unit circle in the
complex plane, with centre 1. Compared to the standard overlap fermion formulation — where the
Wilson operator is inserted into the kernel —DovHF has a better level of locality, it approximates
rotation symmetry better, and it has an improved scaling behaviour [6, 12, 13, 16]. All these virtues
are based on the similarity between the kernel and its overlap operator,D(0)

ovHF ≈ DHF.
In addition, that property also allows us to use a simplified form of the HMC force term, given

by a low polynomial inDHF. This reduces the computational effort for dynamical overlap fermions.
The algorithm is kept exact by applyingDovHF to high precision in the Metropolis step at the end
of each trajectory.

In this way, we simulated this model at weak gauge coupling,β = 1/g2 = 5, with two degen-
erated fermion flavours of massm= 0.01. . .0.24, onL× L lattices,L = 16. . .32 [6]. Regarding
systematic errors, the chiral extrapolation appears safe,and lattice spacing artifacts are harmless as
well (we always deal with smooth configurations, plaquette values≃ 0.9). Finite size effects have
to be discussed, however. To illustrate this, we show in Fig.1 the (theoretically predicted [10])
correlation length in the regime of the fermion masses that we simulated. The significance of finite
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Figure 1: The correlation lengthξ , ranging fromξ (m= 0.24)≃ 1.69 to ξ (m= 0.01) = 14.03.

size effects also implies that the distinction between the topological sectors is important (this is
usually characteristic for theε-regime). The latter are identified by measuring the fermionindex
[17]. Our HMC histories contain only few topological transitions for the light masses, hence we
performed measurements in fixed sectors.
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4. Pattern of chiral symmetry breaking

At least in 4d Yang-Mills theory, there are only three patterns of spontaneous chiral symmetry
breaking, depending on the fermion representation [18]

SU(Nf )⊗SU(Nf ) → SU(Nf ) : unitary (complex representation)

SU(2Nf ) → O(2Nf ) : orthogonal (real representation)

SU(2Nf ) → Sp(2Nf ) : symplectic (pseudo-real representation).

RMT predicts theunfolded level spacing distributionin each of these patterns [19].
For a set of configurations, conf= 1. . .N, we proceed as follows: we numerate the eigenval-

ues in each configuration hierarchically,λ conf
i , i = 1. . .L2. Now we put all eigenvalues (of allN

configurations) together and order them again hierarchically, so we attach labelsk = 1. . .NL2. The
normalised difference[k(λ conf

i+1 )−k(λ conf
i )]/N is the unfolded level spacing.
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Figure 2: The cumulative unfolded level spacing density according toRMT (for different patterns of chiral
symmetry breaking), and from our simulation data. As in QCD,we find accurate agreement with the RMT
curve for the unitary ensemble. A tiny deviation atL = 16 disappears as the volume is enlarged.

We consider the eigenvalues ofD(0)
ovHF, i.e.of the Dirac operatorDovHF that we used in the sim-

ulation, after subtracting the mass. The eigenvalues with Im λi > 0 are mapped stereographically
onto RI + , λi → |λi/(1− λi/2)| . Fig. 2 shows that the resulting level spacing distributionis in
excellent agreement with the RMT prediction for the unitaryensemble, as it was observed before
in QCD [2, 20]. We conclude that this specific RMT formula is sogeneric that it is not even altered
by the absence of a chiral condensate atm= 0.

5. The microscopic Dirac spectrum

In infinite volume,V → ∞, the chiral condensate is given by the Dirac spectrum as

Σ =

∫

dλ
ρ(λ )

λ +m
(ρ : eigenvalue density) . (5.1)
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Along with the prediction quoted in Section 2,Σ ∝ m1/3, this suggests [8]

ρ(λ >∼0) ∝ λ 1/3 , (5.2)

in contrast to the Banks-Casher plateau that one obtains in the standard setting (withΣ(m→0) 6= 0).
In that case, the density for the rescaled small eigenvaluesλiΣV is scale-invariant (at fixedmΣV)
[21]. In our case, the very general relation〈λi〉 ∝ [Vρ(λ >∼0)]−1 implies that the parameter [22]

ζi = λiV
3/4Wζ (for smallλi) (5.3)

is expected to adapt this rôle, at fixedµζ = mV3/4Wζ — or simply at smallm. Wζ is a constant of
dimension [mass]1/2, which is (in this context) analogous toΣ in the standard setting.

Hence we probed the corresponding finite-size scaling, but it is not confirmed. Instead our
data are in excellent agreement with a scale-invariant parameter

zi = λiV
5/8Wz (Wz : constant of dimension[mass]1/4) . (5.4)

This is illustrated in Fig. 3 for our lightest fermion mass,m= 0.01, in the sectors of topological
chargeν = 0 and |ν | = 1. We also tested the behaviour if the rescaled mass is kept≈ const.,
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Figure 3: Cumulative densities ofλiV3/4 ∝ ζi (left), and of λiV5/8 ∝ zi (right), for i = 1. . .4, at mass
m= 0.01 and topological chargeν = 0 (above) resp.|ν| = 1 (below). We see thatζi strongly deviates from
scale-invariance, whereaszi obeys this property to an impressive precision.

as an alternative to just keepingm very small. In Fig. 4 we compare〈ζi〉 in different volumes,
V = L2, L = 16 and 32, again in the sectors|ν |= 0 and 1, forµζ ≈ const. We add the corresponding
test with〈zi〉 andµz = mV5/8Wz ≈ const., which displays again a superior finite size scaling.
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Figure 4: Finite size scaling for〈ζ1〉 at µζ ∝ mV3/4 ≈ const. (left) and〈z1〉 at µz ∝ mV5/8 ≈ const. (right).
These plots confirm again thatz1 performs much better as a scale-invariant variable.

To complete this discussion, we consider even a third scenario, where the exponent ofV in the
rescaling factor is between the two cases considered so far:now the scale-invariant variable would
be Zi = λiV2/3WZ (WZ of dimension [mass]1/3). The behaviour ofZ1 is shown in Fig. 5 (plots
above); as in Fig. 3 we fixm= 0.01 and consider|ν | = 0 and 1. The finite size scaling quality is
clearly better than the one ofζ1, but it cannot compete withz1. This third scenario belongs to a
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Figure 5: Above: Finite size scaling forZ1 ∝ λ1V2/3, at m = 0.01 andν = 0 (left), or |ν| = 1 (right).
Regarding scale-invariance,Z1 performs better thanζ1, but not as good asz1. Below:Eigenvalue histogram
for m= 0.01, ν = 0 compared to the spectral densityρAiry in eq. (5.5), which RMT predicts in this case.
None of these three plots does convincingly support this scenario, in contrast to the compelling evidence that
we found for that finite-size scaling of the variablezi = λiV3/5Wz.

theoretically explored universality class: it corresponds to ρ(λ >∼0) ∝ λ 1/2, which is the spectral
density obtained by RMT in theGaussian approximation. There is a detailed prediction for the

6



P
o
S
(
L
A
T
2
0
0
9
)
0
8
6

Chiral limit without chiral condensate Wolfgang Bietenholz

spectral density in terms ofAiry functionsAi [4],

ρAiry (Z) ∝ Z[Ai(−Z)]2+[Ai ′(−Z)]2 (∼
√

Z/π at Z ≫ 1) . (5.5)

Fig. 5 (below) compares this function to the histogram that we obtained in various volumes at
m= 0.01 andν = 0. Our data display a far more marked wiggle structure, hencethis agreement is
not convincing, and we stay withzi = λiV5/8Wz as the clearly preferred scale-invariant variable —
even though no theoretical prediction for the detailed structure ofρ(z) has been worked out so far.
The error on the exponent 5/8 will be estimated later, see last entry in Ref. [6].

6. Higher eigenvalues

At last we take a look atλ10 as one of the bulk eigenvalues, and we find a optimal finite size
scaling forλ10L1.15, see Fig. 6 (left). The plot on the right shows that this factor works well also for
the rescaled full cumulative density (including all eigenvalues up to the considered value). Based
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Figure 6: Forλ10, a bulk eigenvalue, the scaling factor is shifted toL1.15. The rescaled full spectral cumula-
tive densities in different volumes (form= 0.01,ν = 0) agree well, and turn into bulk behaviourρ(λ ) ∝ λ ,
(resp.ρcumulative(λ ) ∝ λ 2), which is expected ind = 2.

on the fact that the spectral cutoffλmax = 2 is fixed in any volume, it is now tempting to speculate
that the volume factor for a good finite size scaling gradually decreases fromV3/5 . . .V0. However,
considering eigenvalues above the regime shown in Fig. 6, but below the cutoff regime, we could
not find any consistent scaling factor — and indeed there is noneed for it to exist.

7. Conclusions

We presented a pioneering numerical study of a microscopic Dirac spectrum near a chiral
limit with Σ(m→ 0) = 0 at zero temperature. In particular we analysed spectral data of theNf = 2
Schwinger model, obtained from simulations with dynamicalchiral fermions.

The unfolded level spacing density follows the RMT formula for the unitary ensemble.
Refs. [7, 10] predictΣ(m) ∝ m1/3, which suggests a microscopic densityρ(λ >∼0) ∝ λ 1/3, and

the scale-invariant variableζ ∝ λV3/4 (generallyρ ∝ λ α suggests a scale-invariant∝ λV1/(1+α)).
However, this conjecture does not agree with our data. (Notethat its derivation may be invalidated
by inserting a spectral density with explicit mass-dependence,ρ(λ ,m), in eq. (5.1).)

An alternative scenario withρ(λ >∼0) ∝ λ 1/2 is favoured compared to the initial guess. It has
a known theoretical background, but the data do not stronglysupport it either.

7



P
o
S
(
L
A
T
2
0
0
9
)
0
8
6

Chiral limit without chiral condensate Wolfgang Bietenholz

Surprisingly, our data strongly favourz∝ λV5/8 as the scale-invariant variable, and therefore
ρ(λ >∼0) ∝ λ 3/5. This determination is more reliable than a direct fit to the measuredρ(λ ). Inter-
estingly, the first work in Ref. [10] specifies thatΣ ∝ m1/3 is expected forℓ =

√
2mL3/2/(βπ)1/4 ≫

1, whereasℓ ≪ 1 ≪ 2L/
√

πβ implies Σ ∝ mL. For m= 0.01 we are in anintermediateregime,
ℓ = 0.5. . .1.3 (and 2L/

√

πβ = 8.1. . .16.2), which renders our exponent inΣ ∝ m3/5 plausible.
For a precise theoretical test, we hope for RMT formulae to beworked out for this setting, so

they can be confronted with our results; this is not straightforward, but it may be feasible [22].

Acknowledgements :We are indebted to Stanislav Shcheredin and Jan Volkholz fortheir contri-
butions to this work at an early stage, and to Poul Damgaard, Hidenori Fukaya and Jim Hetrick
for numerous highly enlightening and helpful discussions.

References

[1] For a review, see J.J.M. Verbaarschot and T. Wettig,Ann. Rev. Nucl. Part. Sci.50 (2000) 343.

[2] W. Bietenholz, K. Jansen and S. Shcheredin,JHEP07 (2003) 033.

[3] L. Giusti, M. Lüscher, P. Weisz and H. Wittig,JHEP11 (2003) 023. H. Fukayaet al. (JLQCD
Collaboration),Phys. Rev. Lett.98 (2007) 172001.

[4] P.H. Damgaard, U.M. Heller, R. Niclasen, and K. Rummukainen,Nucl. Phys.B 583(2000) 347.

[5] F. Farchioni, P. de Forcrand, I. Hip, C.B. Lang and K. Splittorff, Phys. Rev.D 62 (2000) 014503. T.
Kovács, arXiv:0906.5373 [hep-lat].

[6] J. Volkholz, W. Bietenholz and S. Shcheredin,PoS(LAT2006)040. W. Bietenholz, S. Shcheredin and J.
Volkholz, PoS(LAT2007)064. W. Bietenholz and I. Hip,PoS(LAT2008)079. W. Bietenholz, I. Hip, S.
Shcheredin and J. Volkholz, in prepration.

[7] A. Smilga,Phys. Lett.B 278(1992) 371. Y. Hosotani and R. Rodriguez,J. Phys.A 31 (1998) 9925.

[8] P.H. Damgaard, U.M. Heller, R. Narayanan and B. Svetitsky, Phys. Rev.D 71 (2005) 114503.

[9] S.R. Coleman, R. Jackiw and L. Susskind,Annals Phys.93 (1975) 267.

[10] J. Hetrick, Y. Hosotani and S. Iso,Phys. Lett.B 350(1995) 92. A. Smilga,Phys. Rev.D 55 (1997) 443.

[11] H. Fukaya and T. Onogi,Phys. Rev.D 70 (2004) 054508.

[12] W. Bietenholz and I. Hip,Nucl. Phys.B 570(2000) 423.

[13] W. Bietenholz,Eur. Phys. J.C 6 (1999) 537.

[14] H. Neuberger,Phys. Lett.B 417(1998) 141.

[15] M. Lüscher,Phys. Lett.B 428(1998) 342.

[16] W. Bietenholz,Nucl. Phys.B 644(2002) 223. S. Shcheredin, Ph.D. Thesis (Humboldt Univ. Berlin)
[hep-lat/0502001]. W. Bietenholz and S. Shcheredin,Nucl. Phys.B 754(2006) 17.

[17] P. Hasenfratz, V. Laliena and F. Niedermayer,Phys. Lett.B 427(1998) 125.

[18] S. Dimopoulos,Nucl. Phys.B 168(1980) 69. M.E. Peskin,Nucl. Phys.B 175(1980) 197. J.P.
Preskill,Nucl. Phys.B 177(1981) 21.

[19] M.A. Halasz and J.J.M. Verbaarschot,Phys. Rev. Lett.74 (1995) 3920.

[20] R.G. Edwards, U.M. Heller, J.E. Kiskis and R. Narayanan, Phys. Rev. Lett.82 (1999) 4188.

[21] H. Leutwyler and A. Smilga,Phys. Rev.D 46 (1992) 5607.

[22] P.H. Damgaard, private communication.

8


