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Random Matrix Theory (RMT) has elaborated successful ptiedis for Dirac spectra in field
theoretical models. However, a generic assumption by RMJ been a non-vanishing chiral
condensate in the chiral limit. Here we consider the 2-flavour Schwingsodel, where this
assumption does not hold. We simulated this model with dycaroverlap hypercube fermions,
and enteredierra incognitaby analysing this Dirac spectrum. The usual RMT predictimrtfie
unfolded level spacing distribution in a unitary ensemblednfirmed to a high precision. The
microscopic spectrum does not perform a Banks-Cashergplatastead the obvious expectation
is a density of the lowest eigenvalde which increases] /\11/3. That would correspond to a
scale-invariant parametér AV3/4, which is, however, incompatible with our data. Instead we
observe to high precision a scale-invariant paramefeAV5/8. This surprising result implies a
microscopic spectral densi@u\f/s, which still remains to be understood in the light of RMT.
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1. Dirac spectra and Random Matrix Theory

Random Matrix Theory (RMT) has been applied extensivelyrtmlict the microscopic spec-
tral densities of Dirac operators in fermionic quantum figleories. These predictions were well
confirmed, first with staggered fermions restricted to tleaeof topological charge = 0 [1], and
later with Ginsparg-Wilson fermions also for charged tagital sectors [2, 3]. These applications
referred to the case offinite chiral condensat& = — () in the chiral limit of fermion mass
m — 0, which may occur spontaneously (as in QCD), or due to an aho(as in the 1-flavour
Schwinger model). In this case the microscopic spectrumladis a plateau near zero; its value is
directly related ta> by the Banks-Casher formula (in finite volume the platealighty shifted
away from zero). In the-regime RMT predicts in addition a wiggle structure sup@ased on
this plateau, which does in fact agree with numerical datatching them to the RMT curves
determines as the only free parameter — this is a neat way to evaliate

There are also models with = 0, but that situation is hardly explored by RMT. It occurs
for instance in systems of fermions interacting throughg¢afills gauge theory above the critical
temperature of the chiral phase transition. There are nigalestudies and conjectures about it
[4, 5], but the features of such spectra remain controversia

In addition there are models witi{m — 0) = 0 even at zero temperature. This is the case for
the 2-flavour Schwinger modelhich we are going to discuss here. We simulated this modal wi
dynamical Ginsparg-Wilson fermiofi8]. Here we present our observations on its Dirac spectrum,
which has been completely unexplored so far.

First we review the model and the analytical predictionsXorNext we sketch our lattice
formulation and its simulation. Then we present thdolded level spacing distributigrwhich
agrees accurately with the generic RMT prediction for thitaimy ensemble. As the main subject
of this report, we then focus on the probability density af thading non-zero Dirac eigenvalue
A1, where we reveal a surprising result. Td@le-invariant parameter a rescaled eigenvalue in
finite volume — does not agree with the obvious conjecturdchvis based on the critical exponent
o derived in the literature. The microscopic spectrum doeease without a plateau, but its slope
follows anunexpected power laiinally we also consider the bulk eigenvalues.

2. The chiral condensate in the Schwinger model
The Schwinger model corresponds to QEDRIis 2, given by the Lagrangian

L8, 9.A) = P [0+ 9A) + 1] W)+ SFun (9 (X) (2.1)

For N¢ degenerated fermion flavours of mass« g, a bosonised form of the Schwinger model

leads to the prediction [7],
. Nf +1

CONg—1°
¢ In the quenched case (formalN+ = 0), the divergence df(m — 0) agrees with simulation
results [8].

smom/®, 3

(2.2)

e For N = 1 — the original version of the Schwinger model — one obtairfiniée value
¥(m— 0) = e’/(2r%/?) due to the axial anomalyy(is Euler’s constant) [9].
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e The explicit prediction foN; = 2 readsZ(m) ~ 0.38m%3 [10].
A numerical study with Domain Wall Fermions on a?166 lattice measured in the range
m=0.1...0.3, and a fit in this regime suggest&m) 0 m®38868) [11].

3. Lattice formulation and simulation of the 2-flavour Schwinger model

In our study, we use a lattice formulation with compact lirdcigblesU, x € U (1) and the
plaguette gauge action. For the fermions we applyotrexlap hypercube Dirac operator,

m
Dovee(m) = (1 ) Do+ M, Dighe = 1+ (D — 1)/\/(Dle-DDw-1) . (3)

Dur(U) is a hypercube fermion operator [12]: it is truncated pérfaad thus by construction
approximately chiral [13]. In eq. (3.1) it is inserted inteetoverlap formula [14], which restores
exact (lattice modified) chirality [15]. The spectrum f,?)HF is located on a unit circle in the
complex plane, with centre 1. Compared to the standardawéermion formulation — where the
Wilson operator is inserted into the kernel Bgyyr has a better level of locality, it approximates
rotation symmetry better, and it has an improved scalingielr [6, 12, 13, 16]. All these virtues
are based on the similarity between the kernel and its qweipb&ratoer)?,)HF ~ DyF.

In addition, that property also allows us to use a simplifigf of the HMC force term, given
by a low polynomial irDye. This reduces the computational effort for dynamical ayefermions.
The algorithm is kept exact by applying,nr to high precision in the Metropolis step at the end
of each trajectory.

In this way, we simulated this model at weak gauge couplhg, 1/g> = 5, with two degen-
erated fermion flavours of mass= 0.01...0.24, onL x L lattices,L = 16...32 [6]. Regarding
systematic errors, the chiral extrapolation appears aafi|attice spacing artifacts are harmless as
well (we always deal with smooth configurations, plaquestii@s~ 0.9). Finite size effects have
to be discussed, however. To illustrate this, we show in Eithe (theoretically predicted [10])
correlation length in the regime of the fermion masses tleasiwmulated. The significance of finite
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Figure 1: The correlation lengt§, ranging fromé (m= 0.24) ~ 1.69 to { (m= 0.01) = 14.03.

size effects also implies that the distinction between dpolbgical sectors is important (this is
usually characteristic for the-regime). The latter are identified by measuring the fermimex
[17]. Our HMC histories contain only few topological trati@ins for the light masses, hence we
performed measurements in fixed sectors.
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4. Pattern of chiral symmetry breaking

At least in 4d Yang-Mills theory, there are only three patteof spontaneous chiral symmetry
breaking, depending on the fermion representation [18]

SU(Nf) ® SU(N¢) — SU(Ns) : unitary (complex representation
SU(2Nf) — O(2N¢) : orthogonal (real representation
SU(2N¢) — Sp(2N;) : symplectic  (pseudo-real representation)
RMT predicts theunfolded level spacing distributian each of these patterns [19].
For a set of configurations, coafl...N, we proceed as follows: we numerate the eigenval-
ues in each configuration hierarchicalht®", i = 1...L%. Now we put all eigenvalues (of a

configurations) together and order them again hierardigical we attach labels=1...NL2. The
normalised differencék(AM — k(A" /N is the unfolded level spacing.
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Figure 2: The cumulative unfolded level spacing density accordingT (for different patterns of chiral
symmetry breaking), and from our simulation data. As in Q@® find accurate agreement with the RMT
curve for the unitary ensemble. A tiny deviationLat 16 disappears as the volume is enlarged.

We consider the eigenvaluesf,)HF, i.e. of the Dirac operatoDq e that we used in the sim-
ulation, after subtracting the mass. The eigenvalues withA;[> 0 are mapped stereographically
onto Ry, Ay — |A/(1—Ai/2)|. Fig. 2 shows that the resulting level spacing distributi®im
excellent agreement with the RMT prediction for the unitansemble, as it was observed before
in QCD [2, 20]. We conclude that this specific RMT formula isgemeric that it is not even altered
by the absence of a chiral condensatenat 0.

5. The microscopic Dirac spectrum
In infinite volume,V — o, the chiral condensate is given by the Dirac spectrum as

_ p(A) o -
Z_/d)\ Arm (p : eigenvalue densily. (5.1)
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Along with the prediction quoted in Section®2/1 m/3, this suggests [8]
pP(Az0)0AY3, (5.2)

in contrast to the Banks-Casher plateau that one obtaihe standard setting (with(m— 0) # 0).
In that case, the density for the rescaled small eigenvaliE¥ is scale-invariant (at fixeth>V)
[21]. In our case, the very general relatioh) 0 [V p(A >0)]~! implies that the parameter [22]

G =AV¥W,  (for small)) (5.3)

is expected to adapt this role, at fixgg = mv3/ 4WZ — or simply at smalim. W; is a constant of
dimension [mass$]2, which is (in this context) analogous ¥oin the standard setting.

Hence we probed the corresponding finite-size scaling, thatriot confirmed. Instead our
data are in excellent agreement with a scale-invariantnpater

z =AV®¥3W, (W, : constant of dimensiofmass$Y/4) . (5.4)

This is illustrated in Fig. 3 for our lightest fermion mass—= 0.01, in the sectors of topological
chargev = 0 and|v| = 1. We also tested the behaviour if the rescaled mass is&eginst.,
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Figure 3: Cumulative densities oAjV3/4 0 ¢ (left), and of AV>/8 O z (right), fori = 1...4, at mass
m= 0.01 and topological charge= 0 (above) respv| = 1 (below). We see thaf; strongly deviates from
scale-invariance, whereasobeys this property to an impressive precision.

as an alternative to just keepimgvery small. In Fig. 4 we compar€Z;) in different volumes,
V =L?, L=16and 32, again in the sectdig = 0 and 1, foru; ~ const. We add the corresponding
test with(z) andu, = mVv®8W, ~ const., which displays again a superior finite size scaling.
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Figure 4: Finite size scaling fot{y) aty; 0 mV®/4 ~ const. (left) andz) at i, O mV®8 ~ const. (right).
These plots confirm again that performs much better as a scale-invariant variable.

To complete this discussion, we consider even a third sienainere the exponent &f in the
rescaling factor is between the two cases considered sndarthe scale-invariant variable would
be Zi = AVZ3W, (W, of dimension [mas$]3). The behaviour of; is shown in Fig. 5 (plots
above); as in Fig. 3 we fimm= 0.01 and considejv| = 0 and 1. The finite size scaling quality is
clearly better than the one df;, but it cannot compete withy. This third scenario belongs to a
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Figure 5: Above: Finite size scaling foZ; 0 A;V%/3, atm = 0.01 andv = 0 (left), or |v| = 1 (right).
Regarding scale-invariancg, performs better thag;, but not as good ag. Below: Eigenvalue histogram
for m= 0.01, v = 0 compared to the spectral densily, in eqg. (5.5), which RMT predicts in this case.
None of these three plots does convincingly support thisate, in contrast to the compelling evidence that
we found for that finite-size scaling of the varialde= AV3/S/W, .

theoretically explored universality class: it correspomolp(A >0) O A2, which is the spectral
density obtained by RMT in th&aussian approximationThere is a detailed prediction for the
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spectral density in terms @&iry functionsAi [4],
Pairy (Z) DZ[AI(~Z)P+ A (-2)* (~VZ/m atZ>1). (5.5)

Fig. 5 (below) compares this function to the histogram thatabtained in various volumes at
m= 0.01 andv = 0. Our data display a far more marked wiggle structure, hémniseagreement is
not convincing, and we stay with = A\V>/8W, as the clearly preferred scale-invariant variable —
even though no theoretical prediction for the detailedcstme ofp(z) has been worked out so far.
The error on the exponeny8 will be estimated later, see last entry in Ref. [6].

6. Higher eigenvalues

At last we take a look at1g as one of the bulk eigenvalues, and we find a optimal finite size
scaling forA;oL115, see Fig. 6 (left). The plot on the right shows that this fastorks well also for
the rescaled full cumulative density (including all eigaloxes up to the considered value). Based
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Figure 6: ForA1q, a bulk eigenvalue, the scaling factor is shifted.td°. The rescaled full spectral cumula-
tive densities in different volumes (fon= 0.01, v = 0) agree well, and turn into bulk behavigufA) O A,
(resp.Peumulativd A ) 0 A2), which is expected il = 2.

on the fact that the spectral cutdff,.x = 2 is fixed in any volume, it is now tempting to speculate
that the volume factor for a good finite size scaling graguadicreases frod%/°...V%. However,
considering eigenvalues above the regime shown in Fig.t&ddow the cutoff regime, we could
not find any consistent scaling factor — and indeed there isemal for it to exist.

7. Conclusions

We presented a pioneering numerical study of a microscojacBspectrum near a chiral
limit with Z(m — 0) = 0 at zero temperature. In particular we analysed specttalafaheN; = 2
Schwinger model, obtained from simulations with dynamatatal fermions.

The unfolded level spacing density follows the RMT formuwa the unitary ensemble.

Refs. [7, 10] predicE(m) 0 mY3, which suggests a microscopic densityA > 0) 0 AY/3, and
the scale-invariant variable 0 AV (generallyp 0 A? suggests a scale-invariantA vV (1+2)),
However, this conjecture does not agree with our data. (Mhatieits derivation may be invalidated
by inserting a spectral density with explicit mass-depecdeo (A, m), in eq. (5.1).)

An alternative scenario witp(A >0) O A Y2 is favoured compared to the initial guess. It has
a known theoretical background, but the data do not strosigyport it either.
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Surprisingly, our data strongly favoar AV>/8 as the scale-invariant variable, and therefore
p(A =0) OA%5. This determination is more reliable than a direct fit to theasuregp (A ). Inter-
estingly, the first work in Ref. [10] specifies tHafl m*/? is expected fof = v2mL%/2/(Bm)Y/* >
1, wheread < 1 < 2L//miB implies = O mL. Form= 0.01 we are in arintermediateregime,
¢=05...13 (and 2//7B = 8.1...16.2), which renders our exponent ] m*® plausible.

For a precise theoretical test, we hope for RMT formulae tavbeked out for this setting, so
they can be confronted with our results; this is not strd@yitard, but it may be feasible [22].
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