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The chirally improved (CI) fermion action allows us to obtain results for pion masses down to

320 MeV on (in lattice units) comparatively small lattices with physical extent of 2.4 fm. We use

differently smeared quarks sources to build sets of severalinterpolators. The variational method

then leads to excellent ground state masses for most mesons and baryons. The excited state signals

weaken in quality towards smaller quark masses. In particular the excited baryons come out too

high.

The XXVII International Symposium on Lattice Field Theory -LAT2009
July 26-31 2009
Peking University, Beijing, China

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
9
)
0
8
8

Excited hadrons in nf = 2 QCD C. B. Lang

1. Study with two dynamical CI fermions

We are presenting results of a hadron mass spectrum calculation with emphasis on possible
identification of excited states. The gauge configurations have been obtained with dynamical, mass
degenerate up and down quarks. For the fermions we used the chirally improved (CI) Dirac operator
DCI [1, 2]. This is a parameterized fermion action of the form

Dmn =
16

∑
α=1

Γα ∑
p∈Pα

m,n

cα
p ∏

l∈p

Ul δn,m+p , (1.1)

wherePα
m,n symbolizes paths from sitem to n. Inserting the ansatz in the Ginsparg-Wilson (GW)

equation, truncating the length of the contributions (to, e.g., distance 4), andcomparing the coef-
ficients, leads to a set of algebraic equations, which can be solved (normminimization). We used
a truncated action with terms involving coupling to neighboring sites within a 34 hypercube plus
some extra terms, giving rise to several hundred terms. Part of our definition of the Dirac action
is one step of stout smearing [3] of the gauge configuration. The eigenvalues ofDCI are closer
to the unit circle (where the eigenvalues of exact GW-operators are located) than those of, e.g.,
the improved Wilson operator for the same lattice size (in lattice units). However,(lattice) chiral
symmetry is still violated, albeit to a smaller amount. The gauge action used is a tadpole-improved
Lüscher-Weisz action.

The dynamics was implemented with the hybrid Monte Carlo (HMC) algorithm with Hasen-
busch mass preconditioning (with two pseudofermions) and a chronological inverter utilizing the
mixed precision technique [4]. Details and parameters of the action and the methods of simulation
can be found in [5]. There one also finds a discussion of equilibration and determination of lattice
spacing and AWI (PCAC) mass of the quarks.

The analysis presented here is based on three ensembles of gauge configurations for lattice
size 163×32, with parameters summarized in Table 1.

set βLW am0 tMD configs. a[fm] mπ [MeV] mAWI[MeV]

A 4.70 -0.050 600 100 0.151(2) 525(7) 42.8(4)
B 4.65 -0.060 1200 200 0.150(1) 470(4) 34.1(2)
C 4.58 -0.077 1200 200 0.144(1) 322(5) 15.3(4)

Table 1: Overview of the three ensembles of gauge configurations on which this analysis is based. The
parameters given are: gauge coupling, bare mass parameteram0, number of molecular dynamics (MD) time
units, number of analyzed configurations (in equilibrium and each separated by 5 MD units), lattice spacing
a determined from the static potential with Sommer parameter0.48 fm, pion mass, AWI mass (from the
PCAC relation). For further details see [5].

2. Variational analysis and hadron interpolators

In the variational method [6] one studies the cross-correlation matrix of several lattice oper-
atorsOi with the correct quantum numbers. Inserting a complete set of states (and assuming a
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discrete spectrum, which is always the case for finite lattices) one finds a superposition of expo-
nentially decaying contributions,

C(t)i j = 〈Oi(t)O j(0)〉 = ∑
n
〈0|Oi |n〉〈n|O

†
j |0〉e

−t Mn . (2.1)

Assuming that we have a complete enough set of operators the solution of thegeneralized eigen-
value problem

C(t)~vi = λi(t)C(t0)~vi (2.2)

allows one to disentangle the individual states and the corresponding energies,

λi(t) ∝ e
−t Mi

(

1+O
(

e
−t ∆Mi

))

. (2.3)

The eigenvectors are “fingerprints” of the states which one may follow through several time slices
in order to ensure that the state has been identified consistently (see also thediscussion in [7].)

In order to increase the number of hadron operators and to improve the correlation signal
quality we built interpolating fields with different smearing of the quark fields.We used Jacobi
smeared quark sources, e.g.,us ≡ Ssu, with an hermitian smearing operatorSs as discussed in [5],
with parameters adjusted to produce two different smearing widths, a wide source (s= w, radius
0.55 fm) and a narrow source (s= n, radius 0.27 fm).

We also used derivative quark sources as discussed in [8], e.g., sources likeu∂k
= Dk Swu,

wherek denotes the spatial direction of the covariant derivative

Di(~x,~y) = Ui(~x,0)δ (~x+ î,~y)−Ui(~x− î,0)†δ (~x− î,~y) . (2.4)

The interpolating field operators are built on (in the 3D time slices) 3 times HYP smeared
gauge configurations [9] with smeared valence quark sourcesus, ds (and the strange quarkss). We
regularly shift the center of the sources when passing from one configuration to the next in order to
improve decorrelation.

For the meson operators we use bilinears. Depending on the quantum numbers this allows for
sets of operators with different Dirac structure and varying spatial extent. As an example, for the
pseudoscalar meson we have

un γ5dn , un γ5dw , uw γ5dw , un γtγ5dn , un γtγ5dw , uw γtγ5dw ,

u∂i
γiγ5dn , u∂i

γiγ5dw , u∂i
γiγtγ5dn , u∂i

γiγtγ5dw , u∂i
γ5d∂i

, u∂i
γtγ5d∂i

. (2.5)

The nucleon interpolators have the form

N(i) = εabcΓ(i)
1 ua

(

uT
b Γ(i)

2 dc−dT
b Γ(i)

2 uc

)

(2.6)

with the choices (Γ(i)
1 , Γ(i)

2 ) = (1, Cγ5), (γ5, C), and (i1, Cγ4γ5) for i = 1,2,3 respectively, whereu,
d denote again smeared quarks. The∆ interpolator is

O∆,k = εabcua
(

uT
b Cγk uc

)

, k = 1, 2, 3 . (2.7)

projected to spin32. The baryon propagators are projected to definite parity.
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Figure 1: L.h.s.: The ground state pion and its first excitation. Open symbols denote partially quenched
data, the full symbols denote the dynamical data for the three ensembles A, B and C. R.h.s.: The dynamical
data for the 0++ channela0 are compared with the energy level expected for aπ −η2 channel. In the insert
also the partially quenched data (open symbols) are shown, as discussed in the main text.

3. Results for mesons

0−+ : π±(140), π±(1300). As discussed in [5], in the multi-operator (variational) analysis at
smallpion masses the backwards running (in time) pion limits the observation range for the excited
state. This can be cured by a larger time-size; however, for physical pion masses we expect that
one needs at leastNt = 64 for lattice spacinga = 0.15 fm orNt = 128 fora = 0.075 fm.

We choose the fit interval of the exponential fit to the non-leading eigenvalues based on the
window where the backwards running contribution is not yet dominant andget the excited pion
signal in Fig. 1 (left). We include in this plot (as in some of the other figures) the results for
partially quenched data, i.e., where the valence quark masses are larger than the sea quark masses.

0++ : a0(980), a0(1450). The isovector, scalar meson has led to controversial results in lattice
simulations [10, 11]. Most quenched studies found a ground state extrapolating towards the mass
of the a0(1450) for smaller valence quark masses. Results for (two) dynamical quarks seem to
lead to smaller masses, compatible with an extrapolation towards thea0(980). However, for these
masses the energy values are close to those of an expectedπ −η2 channel in s-wave (mass ofη2

estimated [12]). Fig. 1 (r.h.s.) exhibits the situation.
When also plotting partially quenched values, we find an interesting effect for the ensemble C

with the smallest sea quark mass. The partially quenched data do not smoothly extrapolate to the
dynamical point. An explanation has been offered in [13]: the partially quenched states may couple
to pairs of pseudoscalars (composed of valence and sea quarks), leading to unphysical contributions
that cancel in the fully dynamical case.

Also, we find a broad range of values for the extracted energy levels for different sets of
contributing interpolators. The issue, whether thea0 ground state is dominantly a tetraquark state,
is still not settled (see [14]).

1−− : ρ±(770), ρ±(1450). In Fig. 2 (l.h.s.) we show the results for ground state and first ex-
citation in theρ-channel. For a better signal we allow for different operator combinations for the
excited states. The broken lines give an error window for linear extrapolating fits based on the three
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Figure 2: L.h.s.: Ground and excited state in the 1−− channel. Open symbols denote partially quenched
results. R.h.s.: Ground state in the 2++ channel separately evaluated for interpolator sets in theE (top)
and theT2 representation (below) of the cubic group. Filled symbols denote the values from the three fully
dynamical data sets, open symbols show partially quenched results.

dynamical points only. The agreement with the experimental values is surprisingly good in view
of theρ being a resonance; however, the decay pions are in relative p-wave and due to the given
lattice size the necessary extra unit of momentum stabilizes the vector meson.

We find more admixtures of still higher excitations, and for some combinations ofoperators
we can identify a 3rd energy level compatible with theρ(1700).

Our data in the exotic 1−+ channel is too noisy to allow extraction of a ground state energy
level.

1++ : a1(1260) and 1+− : b1(1235). In both channels we see reliable signals only when includ-
ing derivative interpolators (cf. the discussion for the quenched casein [8]). The error bars are
somewhat larger for 1+− than for 1++, where they are roughly±50 MeV. In both cases a lin-
ear extrapolation points towards the experimental value (within the errors).The mass difference
mlatt,b1 −mlatt,a0 is approximately 200 MeV.

2++ : a2(1320). In this channel two representations of the cubic group couple:E andT2. Again
interpolators involving derivative sources are necessary, e.g.,εi jk u∂i

γ j dn. We find good signals
only when we include several interpolators and thus this is a case where thevariational method is
crucial. Fig. 2 (r.h.s.) demonstrates the situation. The results for the independent analysis of both
representations are compatible, althoughT2 appears to extrapolate better to the physical value.

2−+ : π2(1670) and 2−− : ρ2(1940)?. Qualitatively the situation is like for the 2++ channel. In
both representations we find values compatible with each other and within largeerrors of order 200
MeV also (in linear extrapolation) with the physical mass value.

4. Results for baryons

1
2
+

: N(940), N(1440), N(1710). The baryon system poses various challenges in the excited sec-
tor, among them the identification of the Roper state in lattice calculations. In most calculations in
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Figure 3: Results for the positive parity nucleon channel for the new data with dynamical fermions (l.h.s.)
compared to earlier results from quenched configurations [15] (r.h.s.).
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Figure 4: Positive parity: Ground state∆ and first excitation.

the quenched approximation the first excitation of the (positive parity) nucleon came out too high,
and only within large error bars an extrapolation towards the experimental Roper mass was imag-
inable (see, e.g., the quenched study in [15]). Only recently, and at this conference [16, 17], there
are results showing an energy level extrapolating towards smaller masses.That study was based on
optimizing combinations of interpolators with several widths, like in this and earlierwork [18].

There was some hope that introducing the quark dynamics might improve the situation. Our
present analysis does not strengthen that hope (Fig. 3). Indeed ournew results for dynamical
fermions are similar to earlier quenched results [15]. We want to emphasize that it is important
in this case to simultaneously find both excitations (the Roper and the state extrapolating to the
N(1710)) in order to have a convincing identification. Both excited states are too high inour
results which might indicate that the given volume is too small for baryon excitations.

1
2
−

: N(1535), N(1650). We clearly identify two states but cannot quantify their mass splitting
due to large errors.

3
2
+

:∆(1232),∆(1600) and 3
2
−

:∆(1700). In the positive parity sector (see Fig. 4) we find that
the ground state is closer to the experimental values, as compared to the quenched results. The
excited state is clearly seen, but again too high, maybe due to volume squeezing. The ground state
in the negative parity sector is clearly identified and extrapolates towards theexperimental mass.
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Thus, while our meson results look quite good, the excited baryons come outtoo high. Im-
provement of the signal might be obtained with larger lattices and possibly extending the set of
interpolator (see, e.g., [19]). Further results for the axial charge of baryons including baryons with
strangeness are discussed in [20].

Acknowledgment: This work has been supported by Austrian FWF DK W1203-N08 and
German DFG project SFB/TR-55. The calculations have been performed on the SGI Altix 4700 of
the Leibniz-Rechenzentrum Munich and on local clusters at ZID at the University of Graz.
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