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1. Introduction

Hadron spectroscopy (of excited states) on configurations with light dynamical quarks is reach-
ing a stage where one needs to confront the issue of the mixingof single particle states with multi-
particle states. If the goal is to determine the entire low-lying hadron spectra, one must be able
to disentagle the single particle states from the multi-particle channels as the thresholds are ap-
proached with smaller quark masses.

One of the key issues, then, is the simulation of multi-particle states with controled statistical
errors. Simulating the excited state spectra without the use of explicit multi-particle operators seem
to miss some of the excited states due to a poor overlap with the state. One could construct multi-
particle operators with point-to-all quark propagators, but the need for various momenta operators
at the source and sink prove to be expensive as is the construction of extended hadron operators.
All-to-all quark propagators are too expensive for both computational and storage requirements.
There are various ways of stochastically estimating all-to-all quark propagators in order to over-
come this problem. In this paper, we test a single-timesliceto all-timeslices propagator method
which is exact up to an ultraviolet cutoff.

The simplest two-particle state which can be simulated withthis method is the isospin-2ππ
channel since there are no disconnected diagrams in this channel (see Refs. [1]-[4] for recent dy-
namical simulations). The method we use is the distillationmethod (Ref. [5]), proposed by the
Hadron Spectrum Collaboration. The possibility of computing scattering lengths and phase shifts
via the finite volume method in Euclidean space (Ref. [6]) will also be discussed as preliminary
results are presented.

2. Construction of Operators/Correlators

The distillation process is described in detail in an earlier paper. We briefly summarize the
method here for pion and two-pion correlation functions.

2.1 Distillation

Hadron correlation functions are usually constructed fromquark propagators which have been
smeared in some way to reduce the high frequency noise from the signal. Jacobi smearing is a
commonly used smearing method which amounts to a Gaussian-like damping of the high energy
modes:

ψ̃(~x, t) = Jσ ,nσ (t)ψ(~x, t) =

(

1+
σ
nσ

∇2(t)

)nσ

ψ(~x, t)

where∇2 is the lattice Laplacian operator. Two parameters are tunedto increase the overlap of the
operator onto the low-energy sector of the particular channel of interest,σ andnσ . The distillation
operator on a particular timeslice is constructed from the eigenvectors,v(k)

x (t), of the Laplacian on
that timeslice,

�xy(t) ≡
n

∑
k=1

v(k)
x (t)v(k)†

y (t) (2.1)

≡V(t)V†(t) (2.2)
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wheren is a number between 1 andM = NcNxNyNz. We have usedn = 64 in this study. We then
apply this distillation operator on our quark fields which are then used to construct the hadron
interpolating operators.

2.1.1 Single Pion Correlation Function

The correlation function of a single pion operator with arbitrary momentum is given by the
standard expression,

Cπ(t, t0) = 〈ψ̃γ5ψ(~x, t)ψγ5ψ(~x0, t0)〉.
In order to simulate pions with definite momenta, we need to sum over the spatial sites at the source
and the sink with the appropriate phases,

Cπ(~p; t, t0) = 〈∑
~x

e−i~p·~xψγ5ψ(~x, t)∑
~x0

ei~p·~x0ψγ5ψ(~x0, t0)〉.

The sum over the spatial sites makes it necessary to construct the hadron interpolatingψγ5ψ op-
erator on all spatial points. This is readily done at the sinkeven with point-to-all propagators, but
requires substantial more work at the source. The distilledpion operator, on the other hand, re-
quires no extra work as it contains the propagator from one timeslice to all other timeslices. The
distilled correlation function is then given by,

Cπ(~p; t, t0) =〈∑
x,y,z

e−ipydx(t)�xy(t)γ5�yz(t)uz(t) ∑
x0,y0,z0

eipy0ux0(t0)�x0y0(t0)γ5�y0z0(t0)dz0(t0)〉

(2.3)

= ∑
x,y,z

∑
x0,y0,z0

〈�y0z0(t0)dz0(t0)dx(t)�xy(t)γ5�yz(t)uz(t)ux0(t0)�x0y0(t0)γ5〉 (2.4)

= ∑
x,y,z

∑
x0,y0,z0

〈v(k)
y0 (t0)v

(k)†
z0 (t0)dz0(t0)dx(t)γ5v( j)

x (t)v( j)†
y (t)v(l)

y (t)v(l)†
z (t)

uz(t)ux0(t0)v
(i)
x0 (t0)v

(i)†
y0 (t0)γ5〉 (2.5)

=4

[

∑
x,z0

v( j)†
x (t)M−1(x,z0)v

(k)
z0 (t0)

]†[

∑
y

e−ipyv( j)†
y (t)v(l)

y (t)

]

[

∑
x0,z

v(l)†
z (t)M−1(z,x0)v

(i)
x0 (t0)

][

∑
y0

eipy0v(i)†
y0 (t0)v

(k)
y0 (t0)

]

(2.6)

The eigenvectors and perambulators have been computed and stored for the meson/baryon study
(Ref. [7]).

2.2 Two Pion Correlation Function

The two pion correlation function in the isospin-2 channel consists of only two diagrams; one
of which involves a “quark exchange” (‘C’) diagram and the other which is simply the product of
two, single pion correlation functions (Cπ(~p; t, t0)) with back-to-back momenta (‘D’). The quark
exchange diagram is formed by contracting the perambulators in the following way:

Ccross
ππ =4

[

v( j)†
x M−1(x,z0)v

(k)
z0

]†[

e−ip·yv( j)†
y v(l)

y

][

v(l)†
z M−1(z,x0)v

(i)
x0

][

e−ip·y0v(i)†
y0 v(k)

y0

]

×
[

v(r)†
w M−1(w,w0)v

(l)
w0

]†[

eip·qv(r)†
q v(s)

q

][

v(s)†
u M−1(u,u0)v

(h)
u0

][

eip·q0v(h)†
q0 v(l)

q0

]

(2.7)
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where repeated indices are summed over. The two pions have back-to-back momenta so that the
total momentum of the two-particle system is zero. The two pion correlation function is formed by
taking the difference of the two different contractions to project out theI = 2 channel,

Cππ(t, t0) = ∑
~p

[Cπ(~p; t, t0)Cπ(−~p; t, t0)−Ccross
ππ (~p,−~p; t, t0)]

and the sum over momenta is done to project out thes-wave scattering state.

3. Simulation/Results

3.1 Parameters

We use anisotropic, 2+ 1 dynamical lattices whose tuning of the parameters are discussed in
Ref. [8]. We have results from two different volumes (163 ×128 and 203 ×128) withmπL ≈ 3.5
andmπL ≈ 4.8 (Ref. [9]). The pion mass is roughly 360 MeV on both lattices. The lattice spacing
is such thatr0/as = 3.221(25) with the renormalized anisotropy tuned toξ = as/at = 3.5. We use
the lowest 64 eigenvectors of the Laplacian operator (with stout-smeared links [10]) to construct the
distilled propagators. The number of configurations analyzed were 100 and 94 for the 163 ×128,
203×128 volumes, respectively.

We have used pion operators with momenta 0, 1,
√

2,
√

3 and 2 (in spatial lattice units). All
of the cross correlations were measured to obtain the full matrix of correlation functions.

3.2 Analysis

The five-by-five matrix of correlation functions was diagonalized to get the energies of the first
five ππ scattering states. There are several ways of performing thediagonalization, each with its
own set of advantages and disadvantages. The main concern isthe contamination of the signal in
each of the levels from higher lying states. We provide here some evidence for stability of our data
against the different methods of diagonalization. The general method of extracting excited state
energies from a matrix of correlation functions has been laid out in Ref. [11, 12]. One starts with
the correlation matrixCi j ,

Ci j (t) = 〈Oi(t)O
†
j (0)〉

and solve the generalized eigenvalue problem,

Ci j (t
∗)w j = λ (t∗, t0)Ci j (t0)w j

for a given choice oft0 and t∗ to compute the optimized, fixed-coefficient correlation functions.
One can then compute the effective mass for each choice and also fit the optimized correlation
functions to extract the various energy levels. This methoddoes not guarantee that the excited state
contamination is from states higher than theNth level, but the extraction of the levels does not
involve any more manipulation of the data and can be fit using asimple, correlated chi-squared fit.

The excited state contamination can be guaranteed to be fromstates higher than theNth level
by choosing the ratio oft∗ to t0 larger than two (Ref. [13]). Here we fix this ratio to two and plot the
effective mass along side the fixed-coefficient method in order to check that the fixed coefficient
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Figure 1: The optimized distilled pi-pi effective
mass for theground state (t0 = 10, t∗ = 21) on the
163 × 128 lattice with 64 eigenvectors. A single
time-slice was used for the source operator and the
standard definition of the effective mass was used
with ∆t = 1.
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Figure 2: The optimized distilled pi-pi effective
mass for theground state (t0 = 15, t∗ = 25) on the
163 × 128 lattice with 64 eigenvectors. A single
time-slice was used for the source operator and the
standard definition of the effective mass was used
with ∆t = 1.

signal has no contamination from the lower-lying excited states. We show examples for the ground
state and first excited state to show that the systematics areunder control (Fig. 1-4).

We have also chosen two different sets of (t∗, t0) and computed their effective masses to show
that the dependency there is also very small (Fig. 1-4).

3.3 Fitting

Given the consistency of the various methods of diagonalization, we have chosen to fit the
fixed coefficient, optimized correlators to compute theππ energy levels. One can perform both a
single exponential fit and two-exponential fits to the optimized correlators, but the two fits agree
within statistical errors as can be seen in Fig. 5. We therefore extract the two-pion energy from
single exponential fits whose fitting form was,

Cππ(t) = A
[

e−(2Mπ +δE)t +e−(2Mπ +δE)(T−t)
]

+Be−MπT .

Here,A,B,Eππ andMπ are the constants to be fit andT = 128 is the time extent of the lattice. The
scattering length is determined from Lüscher’s formula (Ref. [6]),

atδE = − 1
ξ 2

(

r0

as

)

4πã0

(atMπ)(L/as)3

{

1−2.837297
ã0

L/as

(

r0

as

)

+6.375183
ã2

0

(L/as)2

(

r0

as

)2
}

Preliminary results for the ratioa0/Mπ extracted from uncorrelated fits in units of GeV−2 is shown
in Fig. 6. The statistical correlation between the single pion correlation functions and two-pion
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Figure 3: The optimized distilled pi-pi effective
mass for thefirst excited state(t0 = 10, t∗ = 21) on
the 163×128 lattice with 64 eigenvectors. A single
time-slice was used for the source operator and the
standard definition of the effective mass was used
with ∆t = 1.
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Figure 4: The optimized distilled pi-pi effective
mass for thefirst excited state(t0 = 15, t∗ = 25) on
the 163×128 lattice with 64 eigenvectors. A single
time-slice was used for the source operator and the
standard definition of the effective mass was used
with ∆t = 1.

correlation function have not been taken into account in thefits, but the statistical error is expected
to decrease when they are fit simultaneously as they are strongly correlated. Work is underway to
fit the ratios simultaneously.

4. Summary

The simulation of theI = 2 ππ scattering states using distilled quark propagators on 2+

1 anisotropic, dynamical lattices have been presented. A relatively light quark mass was used
on two different volumes to check for finite size effects. Thedistilled propagators have allowed
the extraction of the 4th excited state to 10% errors on 100 configurations. Work is underway
to incorporate the correlations between the single pion andthe two-pion measurements to reduce
the statistical errors in the determination of the scattering length and to determine the scattering
phase shift. A modified version of the distillation procedure is also being investigated to reduce
the computational/storage cost of the method in larger volumes and correlation functions which
contain disconnected diagrams.
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Figure 5: The tmin plot of the fitted values for the
pi-pi energies of the second excited state (V = 163).
The dashed fit values indicate a poor fit.

Figure 6: Preliminary values for the scattering
length in units ofGeV−2 extracted using the 1/L
and 1/L3 formula (The 1/L2 value is shown for ref-
erence purposes only).
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