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Flavor-singlet mesons in N f =2+1 QCD with dynamical overlap quarks T. Kaneko

1. Introduction

A quantitative understanding of interesting properties ofthe flavor-singlet mesons is an impor-
tant subject in lattice QCD. The famousU(1) problem is a long-standing issue albeit past ceaseless
efforts. It is also well-known that the flavor-singlet and octet vector mesons mix with each other
almost ideally, though this has not yet been confirmed from first principles.

In this article, we report on our study of the flavor-singlet pseudoscalar (PS) and vector mesons.
There are two salient features of this work: i) we simulateN f =2+1 QCD including the effects of
dynamical strange quarks, which have been often ignored in previous studies of the flavor-singlet
mesons, and ii) we use the all-to-all quark propagator [1] tocalculate disconnected meson correla-
tors, which induce the meson mixings and the mass splittingsfrom flavor-non-singlet mesons.

2. Simulation method

Our gauge configurations ofN f = 2+1 QCD are generated on a 163 × 48 lattice using the
Iwasaki gauge action and the overlap quark action. We also introduce a topology fixing term [2]
into our lattice action to reduce the computational cost, and simulate only the trivial topological
sectorQ = 0 at this stage. The lattice spacing determined fromFπ is 0.100(5) fm. We take four
values of the degenerate up and down quark massesml = 0.015, 0.025, 0.035 and 0.050, which
cover a range of the pion mass from 350 to 610 MeV. Two valuesms =0.080 and 0.100 are chosen
for the strange quark mass. The physical quark masses fixed from Mπ andMK areml,phys= 0.002
andms,phys= 0.065. Statistics are 2,500 HMC trajectories at each combination of ml andms. We
refer readers to Ref.[3] for further details on our gauge configurations.

We measure PS and vector meson correlators using the all-to-all quark propagator. For each
configuration, we prepare 160 low-lying modes(λ (k)

m , u(k)) (k = 1, ...,Ne(= 160)) of the overlap-
Dirac operatorD(m), wherem is the valence quark mass. Their contribution to the quark propagator
is calculated exactly. The higher modes are taken into account stochastically by the noise method.
We prepare a single noise vectorη for each configuration, and dilute [1] it intoNd = 3×4×Nt/2
vectorsη (d) (d = 1, ..,Nd), which have nonzero elements for a single combination of color and
spinor indices and at two consecutive time-slices. The all-to-all propagator can be expressed as

D(m)−1 =
Nv

∑
k=1

v(k)
m w(k)† (Nv = Ne + Nd) (2.1)

with two set of vectors

v(k)
m =

{

u(1)

λ (1)
m

, . . . ,
u(Ne)

λ (Ne)
m

,x(1)
m , . . . ,x(Nd )

m

}

, w(k) =
{

u(1), . . . ,u(Ne),η (1), . . . ,η (Nd)
}

, (2.2)

wherex(d)
m is the solution of the linear equation

D(m)x(d)
m = (1−∑

k

u(k) u(k)†)η (d). (2.3)

We then construct the following meson field at the temporal coordinatet with the Dirac matrix
Γ and a smearing functionφ(r)

O
(k,l)
Γ,φ (m; t) = ∑

x,r
φ(r)w(x+ r, t)(k)† Γvm(x, t)(l). (2.4)
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Figure 1: Connected (left diagram) and disconnected meson correlators (right diagram). We denote the
flavor matrix and the smearing function for the sink meson operator byFa andφi, and those for the source
operator byFb andφ j. The Dirac matrix isΓ= γ5 for PS mesons, whereas we average overΓ= γ1,2,3 for
vector mesons. The masses of propagating quarks are denotedby mq(′) .

The connected and disconnected correlators shown in Fig. 1 can be calculated from these meson
fields. The PS meson correlators, for instance, are given by

CP,ab,i j(∆t) =
1
Nt

∑
t

∑
q,q′=u,d,s

Nv

∑
k,l=1

(Fa)q′,q(Fb)q,q′O
(l,k)
γ5,φi

(mq; t + ∆t)O(k,l)
γ5,φ j

(mq′ ; t), (2.5)

DP,ab,i j(∆t) =
1
Nt

∑
t

∑
q′=u,d,s

Nv

∑
l=1

(Fa)q′,q′O
(l,l)
γ5,φi

(mq′ ; t + ∆t) ∑
q=u,d,s

Nv

∑
k=1

(Fb)q,qO
(k,k)
γ5,φ j

(mq; t). (2.6)

For simplicity, we often suppress the indices of the smearing functions (i and j) in the following.
In this study, we consider the PS and vector mesons in two different flavor bases: i) light and

strange mesons,Pl,s andVl,s, with their flavor matricesFl =(1/
√

2)diag[1,1,0] andFs=diag[0,0,1],
and ii) octet and singlet mesons,P8,0 andV8,0, withU(3) generatorsT8,0 for the flavor matrices (F8=

T8 andF0= T0). We refer to these bases as the light-strange and octet-singlet bases, respectively.
The full correlator of these mesons including the disconnected contribution is given by

G{P,V},ab,i j(∆t) = C{P,V},ab,i j(∆t)−D{P,V},ab,i j(∆t) (a,b ∈ {l,s} or a,b ∈ {8,0}). (2.7)

We calculate all possible correlators with the following five different choices of the smearing func-
tion (namelyi, j=0, ...,4)

φ0(r) = δr,0, φ1(r) ∝ exp[−0.4|r|], φ2(r) ∝ |r|exp[−0.4|r|],
φ3(r) ∝ exp[−1.0|r|], φ4(r) = constant

(2.8)

with the normalization∑r |φi(r)|2 =1. The calculation of all these meson correlators is computa-
tionally cheap, once we prepare thev andw vectors of Eq. (2.2).

Since the quark propagator is decomposed into low- and high-mode contributions, the discon-
nected correlators can be divided into four contributions,i.e. D = DLL + DLH + DHL + DHH . We
calculate these four contributions separately in our measurement.

3. Meson correlators

In Fig. 2, we show an example of the light PS and vector meson correlators. We observe that,
at relatively small∆t, the disconnected pieceDP,ll is not a large correction to the full correlator
GP,ll and it is dominated by the low-mode contributionDLL

P,ll. Therefore, we may safely ignore the
high mode contributions toDP,ll, namelyDLH

P,ll , DHL
P,ll andDHH

P,ll , to calculate the full correlator as

GD=LL
P,ab,i j(∆t) = CP,ab,i j(∆t)−DLL

P,ab,i j(∆t). (3.1)
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Figure 2: Light PS (left panel) and vector meson correlators (right panel) at(ml ,ms)=(0.025,0.080) with
exponential smearingφ1 for source and sink. Open circles, squares and triangles show the full (G{P,V},ll),
connected (C{P,V},ll) and disconnected correlators (D{P,V},ll), respectively. We also plot the low-mode con-
tribution to the disconnected pieceDLL

{P,V},ll by diamonds, and the full correlatorGD=LL
{P,V},ll defined in Eq. (3.1)

by filled circles. We note that the full PS meson correlator has a constant term as discussed in Section 5.

Figure 2 actually shows thatGP,ll is well approximated byGD=LL
P,ll in the whole region of∆t.

As shown in the same figure, the vector meson full correlatorGV,ll turns out to be noisy at
relatively large∆t. The large uncertainty mainly comes from those of high-modecontributions
D{LH,HL,HH}

V,ll due to the noise method with the small number of noise samples. We observe that
GV,ll at small∆t is well approximated byGD=LL

V,ll defined as in Eq. (3.1), and expect that the high-

mode contributionsD{LH,HL,HH}
V,ll remain to be small at larger∆t since they mainly describe short

distance physics. ThenGV,ll is expected to be well approximated byGD=LL
V,ll also at large∆t.

From these observations, we use the meson correlatorsGD=LL
{P,V},ab ignoring the noisy contribu-

tionsD{LH,HL,HH}
{P,V},ab to study the spectrum of the flavor-singlet mesons. The superscript “D=LL“ is

suppressed in the following for simplicity.

4. Vector mesons

We plot the vector meson correlators in Fig. 3. In the light-strange basis, the off-diagonal
correlatorsGV,{ls,sl} are about two orders of magnitude smaller than the diagonal onesGV,{ll,ss}.
There is no such large hierarchy inGV,{88,00,80,08} in the octet-singlet basis. Since the off-diagonal
correlators induce the meson mixing, the above observations indicate that the mixing of the vector
mesons is close to the ideal mixing: namely,V8 andV0 mesons mix significantly with each other to
form ω andφ mesons, which are well approximated byVl andVs.

For a more quantitative examination, we solve the generalized eigenvalue problem (GEVP)

C(∆t ′)−1/2C(∆t)C(∆t ′)−1/2ũn = λ̃n ũn (n = 0,1), (4.1)

whereC(∆t) is 2×2 correlator matrix with specified smearing functions for source and sink

C(∆t) =

(

GV,88(∆t) GV,80(∆t)
GV,08(∆t) GV,00(∆t)

)

. (4.2)
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Figure 3: Vector meson correlators in the light-strange (left panel)and octet-singlet bases (right panel).
Both panels show results with the exponential smearing function φ1 at (ml,ms)=(0.025,0.080). Filled and
open symbols represent diagonal and off-diagonal correlators, respectively.

The creation operators of the energy eigenstates, namely,φ andω mesons, are determined from
the eigenvectors ˜un. We obtain the following relation for the local operators

{

φ = 0.84(5)V8 −0.55(7)V0 = 1.00(1)Vs −0.04(9)Vl

ω = 0.55(7)V8 +0.84(5)V0 = 0.04(9)Vs +1.00(1)Vl
, (4.3)

which implies the ideal mixing of the vector mesons. We observe that this relation of vector meson
operators does not change significantly with other choices of the smearing functions.

In Fig. 4, we plot the effective masses ofω andφ mesons determined from the eigenvaluesλ̃n=

exp[−En(∆t −∆t ′)]. By taking a sufficiently large∆t ′, the effective masses show small dependence
on∆t as well as on the smearing functions. The same figure also shows thatMω andMφ are close to
those from the connected correlators of the light and strange mesonsCV,{ll,ss}. This is because the
diagonal disconnected correlatorsDV,{ll,ss} are small as seen in Fig. 2, and hence they have small
effects toMω andMφ .

In this analysis, we extrapolateMω(φ) to the physical point using a simple linear form

Mω(φ) = aω(φ) + bω(φ)ml + cω(φ)ms. (4.4)
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Figure 4: Left panel: effective masses ofω (solid symbols) andφ mesons (shaded symbols) at(mud ,ms)=

(0.025,0.080). We also plot effective masses ofCV,ll (open circles) andCV,ss (open squares). Right panel:
chiral extrapolation ofMφ . Dotted and dashed lines show fit lines atms andms,phys, respectively.
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As shown in Fig. 4, this fit describes our data reasonably wellwith χ2/d.o.f ∼ 1.3. We obtain
Mω = 909(25)stat(−98)sys MeV andMφ = 1102(13)stat(−97)sys MeV, where the systematic error

is estimated by including a higher order termdω(φ)m
3/2
l [4] and by using a different inputMΩ to fix

the lattice spacing. These results are consistent with the experimental valuesMω =783 MeV and
Mφ =1019 MeV. Note, however, that our data may suffer from significant finite volume corrections
at two smallest quark massesml =0.015 and 0.025, where 2.8≤Mπ L≤3.2. We are planning to
extend this work to a larger volume 243×48 for a more precise comparison with the experiment.

5. PS mesons

Figure 5 shows correlators of the light and strange PS mesons. In contrast to the vector mesons,
the off-diagonal correlatorsGP,{ls,sl} are not so small compared to the diagonal onesGP,{ll,ss} in the
light-strange basis. This leads to a significant strange (light) quark component inη (η ′). For the
local operators, we obtain

η = 0.96(1)Pl −0.28(3)Ps, η ′ = 0.28(3)Pl −0.96(1)Ps. (5.1)

As in phenomenological analyses [5], more unambiguous determination of the mixing matrix could
be provided by constructing the localη andη ′ operators so that their decay constants reproduce
the experimental values. We leave this for a future study.

As predicted analytically [6] and as seen
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Figure 5: Light and strange PS meson correlators.

in Figs. 2 and 5, disconnected contributionDP,ab

induces a constant term in the full correlator
GP,ab at fixed topology,e.g.

mlGP,ll −−−→
∆t→∞

χt

V

(

1− Q2

χtV
+

c4

2χ2
t V

)

, (5.2)

which is suppressed by 1/V . While this term
is useful to determine the topological suscepti-
bility χt [7], this forces us to useGP,ab at small
∆t to extract the PS meson massesMη andM′

η .
To eliminate excited state contamination at such small∆t, we solve the GEVP with the 10×10

correlator matrix including the smearing degrees of freedom

C(∆t) =







GP,88,00(∆t) · · · GP,80,04(∆t)
· · · · · · · · ·
GP,08,40(∆t) · · · GP,00,44(∆t)






. (5.3)

Effective masses ofη andη ′ mesons are plotted in Fig. 6. Althoughη seems to be lighter thanη ′,
the existence of the constant term in Eq. (5.2) leads to a large uncertainty ofMη ′: 10 – 15% already
at simulated quark masses.

From a linear chiral extrapolation in terms ofml andms, we obtainMη =639(50)stat MeV and
Mη ′ = 840(136)stat MeV at the physical point. These are consistent with the experimental values
Mη =548 MeV andMη ′ =958 MeV, though the statistical significance of theη ′ –η mass splitting
(1.4σ ) is not sufficient.
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6. Conclusion

In this article, we report on our study of
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Figure 6: Effective masses ofη ′ (top panel) andη
(bottom panel) at(mud ,ms)=(0.025,0.080)with differ-
ent choices of∆t ′. For a comparison, we also plot effec-
tive mass from the connected strange correlatorCP,ss.

the flavor-singlet mesons inN f =2+1 lattice
QCD using the all-to-all quark propagator to
calculate the disconnected correlators. For
the vector meson, we observe that the small
disconnected contributions in the light-strange
basis lead to the almost ideal mixing and the
small mass shift. This is consistent with the
experimental factMω∼Mρ , and explains why
the previous calculations ofMφ ignoring the
disconnected contributions show reasonable
agreement with experiment [8].

We need to improve the accuracy ofMη ′

to establish theη ′ –η mass splitting. This
could be done by simulating non-trivial topo-
logical sectors as well as by suppressing the fixed topology effects in Eq. (5.2) on a larger lattice.
The latter is also important to suppress finite volume corrections to the PS and vector meson masses
for a more detailed comparison with the experiment. Such simulations on a 243×48 lattice are in
progress.
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