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1. Introduction

Experimentally, hadron-hadron scattering is an importaethod to study the strong inter-
actions. Among the various scattering possibilities, gan scattering is the simplest and best
understood one due to the fact that the underlying chiralrsgtry strongly determines the low
energy behavior of the pion-pion scattering amplitude. ditests simplicity, pion-pion scattering
offers us a lot of information on the strong interactionstha isospin = 2 channel, near threshold
the S-wave scattering length is used to determine the gmrekng low energy constants (LECs)
of chiral perturbation theoryxPT). In thel = 1 channel, the prominence of the rho resonance is
clearly observed. By measuring the P-wave scattering plias@arameters for the resonance mass
and decay width can be extracted. In the 0 channel, the sigma resonance appears in pion-pion
scattering. In contrast to the rho resonance, a precisdifidation of the sigma resonance remains
a great challenge because the large decay width of the sigoses a strong overlap between it
and its background.

Pion-pion scattering is non-perturbative in nature at lowrgies. Therefore, it should be stud-
ied with a non-perturbative method like lattice QCD. In tlemier-of-mass frame (CMF), a direct
lattice QCD determination of the scattering phase is ptesdiip employing Lischer’s finite-size
methods [1, 2, 3, 4, 5], which establish relations betweerdibcrete energy spectrum in the finite
volume and the elastic scattering phase in the infinite veluim the moving frame (MF), where the
total momentum of the pion-pion scattering system is fixdakta non-zero value, one can evaluate
the scattering phase by using the method proposed by Runinewkand Gottlieb [6], which is an
extension of Lischer’'s method to MFs. To perform our caliotes, we use thél; = 2 maximally
twisted mass fermion ensembles from the European Twisteskallaboration (ETMC). Due to
the properties of twisted mass fermions at maximal twist,calculation is automatically accurate
to O(a?) in the lattice spacinga.

In this paper, we present a calculation of the S-wave piom-gicattering length in the= 2
channel and the P-wave scattering phase in tad channel. A calculation of pion-pion scattering
in thel =0 channel using 2 1 flavors of domain wall fermions has been reported receiiilyAl-
though the object of our investigation is simply pion-piaatsering, the approach to study scatter-
ing from finite size methods in lattice QCD is universal and ba applied to other meson-meson,
meson-baryon and baryon-baryon scattering systems.

2. | =2 chann€

In the | = 2 channel, the lattice calculation is performed in the CME.mentioned in the
introduction, Luscher’s finite size method relates the gyédevels of two pion states in a finite
volume to the scattering phase in the infinite volume. Forctee of two pions with zero relative
three-momentum, this method establishes a relationshipeea the lowest energy eigenvalak;?
in a finite box of sizeL and the corresponding scattering lengf? [2]:

Aal =2 al=2 al=2 2
1+ +c <ﬂ>

SEZ=E—?—2mp=——T2

myL3 +O(L™),

L L

wherec; = —2.837297 and; = 6.375183 are numerical constants. Thus the above resultsllow
us to convert a lattice determination of the energy sbifi}-2 into a calculation ofl-2.
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To extract the energy shif§E!—2, and then the scattering lengti_ 2, we use the two flavor
maximally twisted mass fermion configurations from ETMC $8,10]1 The pion masses range
from m; = 270 MeV to 485 MeV. For most of the ensembles, the latticeiggas a = 0.086 fm
and the box size ik = 2.1 fm. For the lower pion masses the volume is increasdd=+02.7 fm.
Additionally, we perform a check for lattice artifacts withsingle calculation at a finer lattice
spacing ofa = 0.067 fm. All the results for the scattering length are showFRi 1.
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Figure 1: Chiral extrapolation for the 1=2 pion-Figure 2: Difference between the lattice calculation
pion scattering length. The results in this workf the scattering lengths and the LX®T prediction.
are shown together with the lattice calculations gfe scattering lengths agree statistically with the LO
NPLQCD [12, 13] and CP-PACS [14] and the exxPT prediction for pion masses ranging fram =
perimental data from E865 at BNL [15]. 270 MeV to 485 MeV.

The next step is to extrapolate the scattering length tohlysipal limit. Here, we make use of
NLO xPT for the pion-pion scattering length, which has recendgrbstudied in the twisted mass
case [16]. The(PT fit curves are shown in Fig. 1. In the same figure, we alsoigeos compari-
son to the lattice results of NPLQCD [12, 13] and CP-PACS H4] the experimental data from
E865 at BNL [15]. We find general agreement between our calicui and the results of NPLQCD
at similar pion masses. Additionally, we find agreement \tlith experimental determination of
mza—2. To highlight the impact of the NLO terms in thPT description of the pion mass depen-
dence ofmzal=?, we show the difference between the lattice calculationthefscattering length
and the LOxPT prediction in Fig. 2. We find that the scattering lengttaistically agree with
the LO xPT result for all lattice calculations witm; < 500 MeV. Accordingly, the NLOYPT
functional form provides a reasonable description of thickaresults in the same regionof;. At
the physical pion mass, we obtain the final results

Mralg? = —0.0438528)(38) and |!72(u = frphy) = 4.65(.85)(1.07),

where the first error is statistical and the second is oumegé of several systematic effects. For
more details, we refer the reader to our recent paper [17].

IThe role of the neutral pion in our setup is discussed in soetaildn Ref. [11]
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3. | =1 channd

In thel = 1 channel, the rho meson decays into two pions in the P-wagethé case of S-
wave, one can make use of finite size methods to calculate-tievE scattering phase. However,
the extraction of the rho resonance from the scatteringepisason-trivial for several reasons. First,
only when the pion masses are light enough to satisfy thenagent ofm; < m, /2, is it possible
for the rho to decay into two pions. Second, the standard fafririischer’s method is derived to
address the elastic scattering process, so the interestiegyy spectrum should be smaller than
4m;; to avoid the inelastic scattering. Third, because of thegfimolume, the energy spectrum of
pion-pion scattering states is discrete, which transletesscattering phases at discrete energies.
Therefore, an analytic expression of the scattering pressquired to describe its dependence on
the energy spectrum. Usually, one employs the effectivgedormula to meet this demand:

o g%m‘[ k3 _ 2
tanél(k) T 6T ECM(M%_E(%M) ) k= V ECM/4_m72'r>

whered; (k) is a P-wave scattering phase in the 1 channel antcy, is the center-of-mass energy.
In the MF,Ecy is simply given byEZ,, = E2 — P2, whereE is the discrete energy eigenvalue and
P is the total momentum of the METhus, in the effective range formula, only two parameters
are undeterminedylr and g7, WhereMg denotes the resonance mass gp#; is the effective

p — T coupling constant, which largely determines the size afmasce decay width:

_%m e Nz
rR—HM—%, k— MR/4—m%

By fitting the discrete scattering phases to the effectivegyeaformula, one can evaluate the pa-
rametersMg andg,r and then determinEg. Conversely, by using the latest PDG [18] values of
m; = 13957024) MeV, M, = 77549(34) MeV andl', = 1491(8) MeV, one can also evaluate
Oorr = 5.98(2) at the physical pion mass.

With the effort required to simulate with light up and downagki masses, the condition of
m; < m,/2 has been satisfied by only a few lattice calculations [19,240. So far, all these
studies concentrated on one or two scattering phases forezmemble. Since the effective range
formula carries two unknown parameters, more scatteriraggd are needed for a precise fit. To
accomplish this goal, a natural way is to calculate the gngpgctrum of the higher excited states.
In order to isolate the ground state and the first excitee sted set up a 2 2 correlation matrix

Colt) = <<<nq>*<> mm)(0)) <<nn>*<t>p<o>>> | 3.1)

t
(P'®(mm(0)  (p'(1)p(0))

where the interpolating operatér)(t) has the same quantum numbels; = 17—, as the inter-
polating operatop(t). After diagonalization of the matrix in 3.1, we obtain theeegy eigenvalues
of the ground state and the first excited st&®(n = 1,2), and then convert them into the scattering
phases. More ambitiously, constructindNax N matrix allows us to look at even higher excited
states. However, the realistic computation of the scaftjephase at higher energi" (n > 2),

2To reduce lattice discretization effects, we use the mitatbstiEcy) = cosiE) — 2sirf(P/2) instead.
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remains a challenge due to the poor signal-to-noise raticta restriction oE" < 4m;. Another
way to determine the scattering phase at more energies isrform a lattice calculation in the
MF. In our case, we use a MF with a total momentirs: €271/, which provides us another two
scattering phase points. In principle, by performing théda calculation in the MF with other
total momenta, for example = (& + &)211/L, it is possible for us to collect even more points.
However, we must be careful in choosing the MF because in $dfethe ground state and the
first excited state are nearly degenerate and isolating tremomes very difficult.
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Figure 3: Center-of-mass energies in the CMF anfdigure 4: Four scattering phases calculated on the
MF. The energies evaluated from the correlation mittice together with the effective range formula fit.
trix are compared with the ones evaluated from th# the position where the scattering phase passes
diagonal matrix elements. 11/2, the resonance mabk is determined.

In this work, both the calculations in the CMF and MF are perfed by usingN; = 2 dynam-
ical maximally twisted mass fermions. The correspondirijica parameters an@,; = 391 MeV,
a=0.086 fm,L = 2.1 fm andm;/m, = 0.4. By diagonalizing the Z 2 matrix in 3.1, theEcm
of the ground state and the first excited state are evaluagdzown in Fig. 3. In order to inves-
tigate the effect of diagonalization, we also perform a gtiht utilizes only the diagonal matrix
elements. We see that in the CMF, there is a strong mixing detvithe ground state and the first
excited state ir((7trm)T(t)(711) (0)). While in the MF, a similar situation happens (o' (t)p(0)).
So no operator safely provides us the ground state energgtinftames. Therefore, introducing
the diagonalization method to the calculation of rho decagoimes essential.

As shown in Fig. 3, all the four values &\ are smaller thanm;. Unlike continuum QCD,
twisted mass LQCD violates the symmetries of isospin aniypahs a result, it is possible for
the rho to decay into three pions, which means that at nom-adtice spacing the upper bound
of the elastic scattering region is lowered tm3 Additionally, the isospin symmetry breaking
causes a mixing between the= 1 channel and the possible= 0 andl = 2 channels. Thus, a
corresponding modification would be required to adapt Lésshmethod to the isospin mixing
case. In Ref. [17], a significant effort was made by us to giteimfind these effects in the= 2
channel, but no compelling evidence was found. Howevegtieets of isospin violation in the |=1
channel are expected to be more severe [16]. Just for thegesof these proceedings, we assume
that such effects are small. Therefore, we convert all the Eg)\ values into the corresponding
scattering phases using the normal method. As in Ref. [1&will eventually examine the effects
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Figure 5: L dependence oEl,, (n=1,2) at a pion Figure6: L dependence d&y, (n=1,2) in the phys-
mass ofn; =391 MeV, using values dflr andg - ical limit, defined by the latest PDG [18] values of
in Eq. 3.2. Mg andgp .

of parity breaking carefully and complement the currentakdtion with a calculation at a finer
lattice spacing to explicitly check for any strong lattiaéifacts forl = 1.

The results for the scattering phase are shown in Fig. 4 tegetith the effective range for-
mula fit. At the position where the scattering phase pasg@s the resonance mab4y is deter-
mined. Additionally, the values ad,r andlr are also evaluated from the fit. Our final results
are

aMg = 0.418656) , Qo =6.16(48) and alg=0.021744) . (3.2)

Here, our result fog,r atm; = 391 MeV agrees statistically with that at the physical picass)
which hints that the pion mass dependencegf; might be weak. However, we can not make
any strong statements here since our calculation of rhoydeaanly performed at one pion mass
and our errors are rather large. To determine the chirak lohg, - andMg, we will perform our
calculation at smaller pion masses.

Usually one takes the ground state enefigy, in the CMF as the rho mass. This is correct
in the casem; > m, /2 where the rho is still a stable particle aEéM has only an exponentially
suppressetl dependence. However, whem, becomes smaller the rho becomes unstabIeE@p\p
begins to depend more strongly bnAs an example, we calculakgy (L) by combining Luscher’s
formula and the effective range formula with the paramebgsand gy given in Eg. 3.2. As
shown in Fig. 5, the. dependence of the lowest level is visible but still weak atam pnass of
m; = 391 MeV. Decreasingy; further, more phase space becomes available for the rhactyde
into two pions. Thus, assumirgy; is roughly constant, the decay width becomes larger and the
lowest level in the CMF begins to look more like a scatteritafes Fig. 6 show&cw(L) in the
extreme limit at the physical pion mass. There we seeﬁégtdrops so rapidly with that it bears
no resemblance to a stable state with nidgs

4. Conclusions

We have calculated the S-wave pion-pion scattering lemgtihel = 2 channel and the P-wave



Scattering from finite size methods in lattice QCD Xu Feng

pion-pion scattering phase in the= 1 channel using\; = 2 maximally twisted mass fermions. In
the former channel, the pion masses ranged from 270 MeV td®B. Using xPT at NLO, we
extrapolated our results for the scattering length to thgsiaal limit, where we foundn,al-? =
—0.04385(28)(38) andl!;2(u = frphy) = 4.65(.85)(1.07). In the latter channel, we performed a
calculation am; = 391 MeV,a= 0.086 fm andm,/m, = 0.4. Making use of finite size methods,
we evaluated the scattering phase at four energies, to wedit the effective range formula and
found the resulteiMr = 0.418656), gprr = 6.16(48) andal' r = 0.021744).
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