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tering length in the isospinI = 2 channel and the P-wave pion-pion scattering phase in the isospin
I = 1 channel. In the former channel, the lattice calculations are performed at pion masses rang-
ing from 270 MeV to 485 MeV. We use chiral perturbation theoryat next-to-leading order to
extrapolate our results. At the physical pion mass, we findmπaI=2

ππ = −0.04385(28)(38) for the
scattering length. In the latter channel, the calculation is currently performed at a single pion
mass of 391 MeV. Making use of finite size methods, we evaluatethe scattering phase in both the
center of mass frame and the moving frame. The effective range formula is employed to fit our
results, from which the rho resonance mass and decay width are evaluated.
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1. Introduction

Experimentally, hadron-hadron scattering is an importantmethod to study the strong inter-
actions. Among the various scattering possibilities, pion-pion scattering is the simplest and best
understood one due to the fact that the underlying chiral symmetry strongly determines the low
energy behavior of the pion-pion scattering amplitude. Despite its simplicity, pion-pion scattering
offers us a lot of information on the strong interactions. Inthe isospinI = 2 channel, near threshold
the S-wave scattering length is used to determine the corresponding low energy constants (LECs)
of chiral perturbation theory (χPT). In theI = 1 channel, the prominence of the rho resonance is
clearly observed. By measuring the P-wave scattering phase, the parameters for the resonance mass
and decay width can be extracted. In theI = 0 channel, the sigma resonance appears in pion-pion
scattering. In contrast to the rho resonance, a precise identification of the sigma resonance remains
a great challenge because the large decay width of the sigma causes a strong overlap between it
and its background.

Pion-pion scattering is non-perturbative in nature at low energies. Therefore, it should be stud-
ied with a non-perturbative method like lattice QCD. In the center-of-mass frame (CMF), a direct
lattice QCD determination of the scattering phase is possible by employing Lüscher’s finite-size
methods [1, 2, 3, 4, 5], which establish relations between the discrete energy spectrum in the finite
volume and the elastic scattering phase in the infinite volume. In the moving frame (MF), where the
total momentum of the pion-pion scattering system is fixed tobe a non-zero value, one can evaluate
the scattering phase by using the method proposed by Rummukainen and Gottlieb [6], which is an
extension of Lüscher’s method to MFs. To perform our calculations, we use theNf = 2 maximally
twisted mass fermion ensembles from the European Twisted Mass Collaboration (ETMC). Due to
the properties of twisted mass fermions at maximal twist, our calculation is automatically accurate
to O(a2) in the lattice spacing,a.

In this paper, we present a calculation of the S-wave pion-pion scattering length in theI = 2
channel and the P-wave scattering phase in theI = 1 channel. A calculation of pion-pion scattering
in theI = 0 channel using 2+1 flavors of domain wall fermions has been reported recently [7]. Al-
though the object of our investigation is simply pion-pion scattering, the approach to study scatter-
ing from finite size methods in lattice QCD is universal and can be applied to other meson-meson,
meson-baryon and baryon-baryon scattering systems.

2. I = 2 channel

In the I = 2 channel, the lattice calculation is performed in the CMF. As mentioned in the
introduction, Lüscher’s finite size method relates the energy levels of two pion states in a finite
volume to the scattering phase in the infinite volume. For thecase of two pions with zero relative
three-momentum, this method establishes a relationship between the lowest energy eigenvalueEI=2

ππ
in a finite box of sizeL and the corresponding scattering lengthaI=2

ππ [2]:

δEI=2
ππ = EI=2

ππ −2mπ = −
4πaI=2

ππ
mπL3

[

1+c1
aI=2

ππ
L

+c2

(

aI=2
ππ
L

)2
]

+O(L−6) ,

wherec1 = −2.837297 andc2 = 6.375183 are numerical constants. Thus the above result allows
us to convert a lattice determination of the energy shiftδEI=2

ππ into a calculation ofaI=2
ππ .
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To extract the energy shift,δEI=2
ππ , and then the scattering length,aI=2

ππ , we use the two flavor
maximally twisted mass fermion configurations from ETMC [8,9, 10].1 The pion masses range
from mπ = 270 MeV to 485 MeV. For most of the ensembles, the lattice spacing is a = 0.086 fm
and the box size isL = 2.1 fm. For the lower pion masses the volume is increased toL = 2.7 fm.
Additionally, we perform a check for lattice artifacts witha single calculation at a finer lattice
spacing ofa = 0.067 fm. All the results for the scattering length are shown inFig. 1.
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Figure 1: Chiral extrapolation for the I=2 pion-
pion scattering length. The results in this work
are shown together with the lattice calculations of
NPLQCD [12, 13] and CP-PACS [14] and the ex-
perimental data from E865 at BNL [15].
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Figure 2: Difference between the lattice calculation
of the scattering lengths and the LOχPT prediction.
The scattering lengths agree statistically with the LO
χPT prediction for pion masses ranging frommπ =

270 MeV to 485 MeV.

The next step is to extrapolate the scattering length to the physical limit. Here, we make use of
NLO χPT for the pion-pion scattering length, which has recently been studied in the twisted mass
case [16]. TheχPT fit curves are shown in Fig. 1. In the same figure, we also provide a compari-
son to the lattice results of NPLQCD [12, 13] and CP-PACS [14]and the experimental data from
E865 at BNL [15]. We find general agreement between our calculation and the results of NPLQCD
at similar pion masses. Additionally, we find agreement withthe experimental determination of
mπaI=2

ππ . To highlight the impact of the NLO terms in theχPT description of the pion mass depen-
dence ofmπaI=2

ππ , we show the difference between the lattice calculations ofthe scattering length
and the LOχPT prediction in Fig. 2. We find that the scattering lengths statistically agree with
the LO χPT result for all lattice calculations withmπ < 500 MeV. Accordingly, the NLOχPT
functional form provides a reasonable description of the lattice results in the same region ofmπ . At
the physical pion mass, we obtain the final results

mπaI=2
ππ = −0.04385(28)(38) and l I=2

ππ (µ = fπ,phy) = 4.65(.85)(1.07) ,

where the first error is statistical and the second is our estimate of several systematic effects. For
more details, we refer the reader to our recent paper [17].

1The role of the neutral pion in our setup is discussed in some detail in Ref. [11]
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3. I = 1 channel

In the I = 1 channel, the rho meson decays into two pions in the P-wave. As the case of S-
wave, one can make use of finite size methods to calculate the P-wave scattering phase. However,
the extraction of the rho resonance from the scattering phase is non-trivial for several reasons. First,
only when the pion masses are light enough to satisfy the requirement ofmπ < mρ/2, is it possible
for the rho to decay into two pions. Second, the standard formof Lüscher’s method is derived to
address the elastic scattering process, so the interestingenergy spectrum should be smaller than
4mπ to avoid the inelastic scattering. Third, because of the finite volume, the energy spectrum of
pion-pion scattering states is discrete, which translatesinto scattering phases at discrete energies.
Therefore, an analytic expression of the scattering phase is required to describe its dependence on
the energy spectrum. Usually, one employs the effective range formula to meet this demand:

tanδ1(k) =
g2

ρππ

6π
k3

ECM(M2
R−E2

CM)
, k =

√

E2
CM/4−m2

π ,

whereδ1(k) is a P-wave scattering phase in theI = 1 channel andECM is the center-of-mass energy.
In the MF,ECM is simply given byE2

CM = E2−~P2, whereE is the discrete energy eigenvalue and
~P is the total momentum of the MF.2 Thus, in the effective range formula, only two parameters
are undetermined,MR andgρππ , whereMR denotes the resonance mass andgρππ is the effective
ρ → ππ coupling constant, which largely determines the size of resonance decay width:

ΓR =
g2

ρππ

6π
k3

M2
R

, k =
√

M2
R/4−m2

π .

By fitting the discrete scattering phases to the effective range formula, one can evaluate the pa-
rametersMR andgρππ and then determineΓR. Conversely, by using the latest PDG [18] values of
mπ = 139.5702(4) MeV, Mρ = 775.49(34) MeV andΓρ = 149.1(8) MeV, one can also evaluate
gρππ = 5.98(2) at the physical pion mass.

With the effort required to simulate with light up and down quark masses, the condition of
mπ < mρ/2 has been satisfied by only a few lattice calculations [19, 20, 21]. So far, all these
studies concentrated on one or two scattering phases for each ensemble. Since the effective range
formula carries two unknown parameters, more scattering phases are needed for a precise fit. To
accomplish this goal, a natural way is to calculate the energy spectrum of the higher excited states.
In order to isolate the ground state and the first excited state, we set up a 2×2 correlation matrix

C2×2(t) =

(

〈(ππ)†(t)(ππ)(0)〉 〈(ππ)†(t)ρ(0)〉

〈ρ†(t)(ππ)(0)〉 〈ρ†(t)ρ(0)〉

)

, (3.1)

where the interpolating operator(ππ)(t) has the same quantum numbers,JPC = 1−−, as the inter-
polating operatorρ(t). After diagonalization of the matrix in 3.1, we obtain the energy eigenvalues
of the ground state and the first excited state,En (n= 1,2), and then convert them into the scattering
phases. More ambitiously, constructing aN×N matrix allows us to look at even higher excited
states. However, the realistic computation of the scattering phase at higher energy,En (n > 2),

2To reduce lattice discretization effects, we use the relation cosh(ECM) = cosh(E)−2sin2(P/2) instead.
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remains a challenge due to the poor signal-to-noise ratio and the restriction ofEn < 4mπ . Another
way to determine the scattering phase at more energies is to perform a lattice calculation in the
MF. In our case, we use a MF with a total momentum~P =~e32π/L, which provides us another two
scattering phase points. In principle, by performing the lattice calculation in the MF with other
total momenta, for example~P = (~e1 +~e2)2π/L, it is possible for us to collect even more points.
However, we must be careful in choosing the MF because in someMFs the ground state and the
first excited state are nearly degenerate and isolating thembecomes very difficult.
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Figure 3: Center-of-mass energies in the CMF and
MF. The energies evaluated from the correlation ma-
trix are compared with the ones evaluated from the
diagonal matrix elements.
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Figure 4: Four scattering phases calculated on the
lattice together with the effective range formula fit.
At the position where the scattering phase passes
π/2, the resonance massMR is determined.

In this work, both the calculations in the CMF and MF are performed by usingNf = 2 dynam-
ical maximally twisted mass fermions. The corresponding lattice parameters aremπ = 391 MeV,
a = 0.086 fm,L = 2.1 fm andmπ/mρ = 0.4. By diagonalizing the 2× 2 matrix in 3.1, theECM

of the ground state and the first excited state are evaluated and shown in Fig. 3. In order to inves-
tigate the effect of diagonalization, we also perform a study that utilizes only the diagonal matrix
elements. We see that in the CMF, there is a strong mixing between the ground state and the first
excited state in〈(ππ)†(t)(ππ)(0)〉. While in the MF, a similar situation happens to〈ρ†(t)ρ(0)〉.
So no operator safely provides us the ground state energy in both frames. Therefore, introducing
the diagonalization method to the calculation of rho decay becomes essential.

As shown in Fig. 3, all the four values ofECM are smaller than 4mπ . Unlike continuum QCD,
twisted mass LQCD violates the symmetries of isospin and parity. As a result, it is possible for
the rho to decay into three pions, which means that at non-zero lattice spacing the upper bound
of the elastic scattering region is lowered to 3mπ . Additionally, the isospin symmetry breaking
causes a mixing between theI = 1 channel and the possibleI = 0 andI = 2 channels. Thus, a
corresponding modification would be required to adapt Lüscher’s method to the isospin mixing
case. In Ref. [17], a significant effort was made by us to attempt to find these effects in theI = 2
channel, but no compelling evidence was found. However, theeffects of isospin violation in the I=1
channel are expected to be more severe [16]. Just for the purposes of these proceedings, we assume
that such effects are small. Therefore, we convert all the four ECM values into the corresponding
scattering phases using the normal method. As in Ref. [17], we will eventually examine the effects
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Figure 5: L dependence ofEn
CM (n=1,2) at a pion

mass ofmπ = 391 MeV, using values ofMR andgρππ
in Eq. 3.2.
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Figure 6: L dependence ofEn
CM (n=1,2) in the phys-

ical limit, defined by the latest PDG [18] values of
MR andgρππ .

of parity breaking carefully and complement the current calculation with a calculation at a finer
lattice spacing to explicitly check for any strong lattice artifacts for I = 1.

The results for the scattering phase are shown in Fig. 4 together with the effective range for-
mula fit. At the position where the scattering phase passesπ/2, the resonance massMR is deter-
mined. Additionally, the values ofgρππ andΓR are also evaluated from the fit. Our final results
are

aMR = 0.4186(56) , gρππ = 6.16(48) and aΓR = 0.0217(44) . (3.2)

Here, our result forgρππ atmπ = 391 MeV agrees statistically with that at the physical pion mass,
which hints that the pion mass dependence ofgρππ might be weak. However, we can not make
any strong statements here since our calculation of rho decay is only performed at one pion mass
and our errors are rather large. To determine the chiral limit of gρππ andMR, we will perform our
calculation at smaller pion masses.

Usually one takes the ground state energyE1
CM in the CMF as the rho mass. This is correct

in the casemπ ≥ mρ/2 where the rho is still a stable particle andE1
CM has only an exponentially

suppressedL dependence. However, whenmπ becomes smaller the rho becomes unstable andE1
CM

begins to depend more strongly onL. As an example, we calculateECM(L) by combining Lüscher’s
formula and the effective range formula with the parametersMR andgρππ given in Eq. 3.2. As
shown in Fig. 5, theL dependence of the lowest level is visible but still weak at a pion mass of
mπ = 391 MeV. Decreasingmπ further, more phase space becomes available for the rho to decay
into two pions. Thus, assuminggρππ is roughly constant, the decay width becomes larger and the
lowest level in the CMF begins to look more like a scattering state. Fig. 6 showsECM(L) in the
extreme limit at the physical pion mass. There we see thatE1

CM drops so rapidly withL that it bears
no resemblance to a stable state with massMR.

4. Conclusions

We have calculated the S-wave pion-pion scattering length in theI = 2 channel and the P-wave

6



P
o
S
(
L
A
T
2
0
0
9
)
1
0
9

Scattering from finite size methods in lattice QCD Xu Feng

pion-pion scattering phase in theI = 1 channel usingNf = 2 maximally twisted mass fermions. In
the former channel, the pion masses ranged from 270 MeV to 485MeV. UsingχPT at NLO, we
extrapolated our results for the scattering length to the physical limit, where we foundmπaI=2

ππ =

−0.04385(28)(38) andl I=2
ππ (µ = fπ,phy) = 4.65(.85)(1.07). In the latter channel, we performed a

calculation atmπ = 391 MeV,a= 0.086 fm andmπ/mρ = 0.4. Making use of finite size methods,
we evaluated the scattering phase at four energies, to whichwe fit the effective range formula and
found the resultsaMR = 0.4186(56), gρππ = 6.16(48) andaΓR = 0.0217(44).
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