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tigating interpolating operators projected into irreducible representations of the cubic group in

order to better calculate two-point correlators for nucleon spectroscopy; results are published for
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1. Introduction

A new generation of experiments devoted to hadron spectroscopy, including GlueX at Jef-
ferson Lab, PANDA at GSI/FAIR and BES III intend to make measurements with unprecedented
precision and in previously unexplored mass ranges and quantum numbers. Both in meson and
baryon spectroscopy, there are many experimentally observed excited states whose physical prop-
erties are poorly understood and could use theoretical input from lattice QCD to solidify their
identification. Aside from masses, other excited-state quantities that could be computed on the
lattice, such as form factors and coupling constants, wouldbe useful to groups such as the Excited
Baryon Analysis Center (EBAC) at Jefferson Lab, where dynamical reaction models have been de-
veloped to interpret experimentally observed properties of excited nucleons in terms of QCD [1]In
certain cases, input from the lattice may be helpful in determining the composition of controversial
states, which may be interpreted as ordinary hadrons, tetra- or pentaquarks, hadronic molecules or
unbound resonances.

Among the excited nucleon states, the nature of the Roper resonance,N(1440) P11, has been
the subject of interest since its discovery in the 1960s. It is quite surprising that the rest energy of
the first excited state of the nucleon is less than the ground-state energy of nucleon’s negative-parity
partner, theN(1535) S11 [2], a phenomenon never observed in meson systems. There areseveral
interpretations of the Roper state, for example, as the hybrid state that couples predominantly to
QCD currents with some gluonic contributionor as a five-quark (meson-baryon) state [3]

Due to the greater impact of systematic errors, such as finite-volume effects and discretization
errors, on excited states, there is an essential need to examine calculations of excited masses more
carefully during analysis. It is common in such calculations to use the ground-state masses, such
as nucleon mass, as a starting point for analysis but withoutfurther checks of the consistency of the
approach. The nucleon mass has been demonstrated with good consistency (a great demonstration
of the universality of lattice QCD using different fermion actions by various groups with inde-
pendent analyses) in both quenched and dynamicalNf = 2+ 1 cases. For dynamical ensembles,
there are more variables in terms of algorithm, scale setting, etc., but an approximate universality is
achieved among different groups (see middle panel of Fig. 1). However, beyond the ground state,
there exists a diverse distribution of excited-state masses as functions ofmπ . There are big discrep-
ancies in the calculated nucleon first-excited mass, creating an apparently chaotic atmosphere, as
shown in the left panel of Fig. 1. Note that the errorbars hereare just statistical, none of the system-
atic errors (such as quenching, finite-volume effect, etc.)are estimated. We re-address the same
issue by modifying the axes to be in terms of the dimensionless quantityML (as shown right panel
of Fig. 1); we find that the Roper masses are roughly inverselyproportional to lattice size. Now
we see a better agreement (or universality) among the lattice QCD Roper-mass calculations; most
of the Roper masses agree within 2 standard deviations of thenumbers in Ref. [4]. This suggests
that finite-volume effects can be more severe for excited states than ground states and that careful
examination of such systematic errors is crucial. Similarly, we cannot ignore other systematic er-
rors that may arise even if we did not observe the effect in theground state. Excited-state analyses
should proceed with greater caution.

To tackle the challenge of extracting reliable excited-state energies, the Hadron Spectrum Col-
laboration (HSC) has been devoting resources and effort into resolving the mystery from the funda-
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Figure 1: Summary of published quenched (Nf = 0) lattice QCD calculations of the nucleon and Roper
masses in GeV (left) and in terms of the dimensionless product of the Roper mass and lattice sizeL (right).
The middle panel shows the dimensionless products of lattice nucleon mass andr0 as a function ofmπ r0

from Nf = 2+1 ensemble.

mental point of view. It is difficult to extract the excited state reliably without sufficient information
carried in the nucleon correlators. We need correlators which clearly contain the masses of specific
quantum numbers and allow us access to data points that reachhigher excited states before the
signal decays exponentially away. To successfully and reliably extract these excited-state energies,
we need better resolution in temporal direction (large superfine isotropic lattices or anisotropic lat-
tices), separation of the signals for individual states (variational method), and most importantly,
operators that have good overlap with various desired quantum numbers (cubic-group irreducible
representations and some way to put in many operators contribute unique signals).

2. Nf = 2+1 Clover Anisotropic Lattices and Updates

To improve our ability to extract higher excited energies (even with the aid of the variational
method), we need to use finer temporal lattice spacings. Thisallows us to use as many time slices
of information as possible to reconstruct more accurately the signal due to a particular state, since
the signal in the Euclidean space declines exponentially asEt. In principle, we could use very fine
lattices while keeping the volume big enough to avoid the “squeezing” systematic effect; however,
the computational cost scales significantly (power of 5–6) with the lattice discretization. We adopt
the approach of anisotropic clover lattices to keep the spatial lattice spacing coarse, avoiding finite-
volume systematic error, and to make the temporal lattice spacing fine enough to extract towers of
nucleon excited states. However, tuning theO(a)-improved parameters for fermion actions in the
dynamical gauge generation correctly is a much more difficult task for anisotropic lattices. We use
Symanzik-improved gauge action and clover fermion action with 3-dimensional stout-link smeared
gauge fields; the gauge ensemble is generated using the (R)HMC algorithm. Our spatial lattice
spacing isas = 0.1227(8) fm (determined usingmΩ), and the renormalized anisotropyξR = as/at

is 3.5. Ref. [5] shows a detailed study of the dynamical anisotropic lattice parameter settings,
and Ref. [6] reports basic lattice properties along with measurement of the ground-state hadron
spectrum.

Since then, we have also moved on to generate 230-MeV 243 and 323 lattices. A stream
of 180-MeV ensembles is slowly progressing (for both 243 and 323 volumes). In Ref. [6], we
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Figure 2: (Left panel) The location of the dynamical ensembles used inthis work in thesΩ-lΩ plane.
The leftmost circle (black) indicates the physical point {lphys

Ω , sphys
Ω }, while the red, green and blue points

are the lattices withatms = −0.0540,−0.0618,−0.0743 respectively in Ref. [6]. The horizontal dashed
(pink) line indicates constantsΩ at the physical point, and the diagonal line indicates three-flavor degenerate
theories. The purple points are from recent measurements ofthe 230 MeV ensemble, showing that it does
not deviate away from theNf = 3 value. Mass-ratio chiral extrapolations as functions of the lΞ andsΞ for
octets (left panel) andlΩ andsΩ for decuplets (right panel). The lines indicate the “projected” leading chiral
extrapolation fits inlΞ andsΞ (lΩ andsΩ) while keeping the other one fixed. The black (circular) point is the
extrapolated point at physicallΞ andsΞ (lΩ andsΩ). The masses forN, Σ andΛ are 0.962(29), 1.203(11),
1.122(16) GeV, respectively, and the masses for∆, Σ∗ andΞ∗ are 1.275(38), 1.426(25) and 1.580(13) GeV,
respectively.

demonstrated and compared various strange-quark mass-setting approaches. We tuned the param-
etersΩ =

9(2m2
K−m2

π)

4m2
Ω

as close as possible to the corresponding experimental value at theSU(3) f -
symmetric point (in our case, it is the 875-MeV–pion ensemble). When we reduce the sea-quark
mass, thesΩ parameter remains roughly constant as low as the 383 MeV pionensemble. (Fur-
thermore, thesΩ parameter is more sensitive to the strange-quark mass than other methods, such
asJ-parameter. Since it is a ratio, there is no need to worry about estimating the shift in the lat-
tice spacing when decreasing the sea-quark mass or generating more statistics.) We measure the
same quantity on the 230-MeV 243 ensemble andsΩ does not deviate from the expected value.
ThesΩ parameter is a stable and useful observable for setting the strange-quark mass; we have not
observed any notable deviation for a wide range of sea-quarkmasses.

In Ref. [6], we reported a naive extrapolation in mass ratios(usingmΩ or mΞ as the reference
mass) to obtain the meson and baryon masses. Note that at eachsea-strange mass, we only use the
larger-volume set for the lightest pion mass to avoid large finite-volume effects. The advantage of
using the mass ratios instead of the masses is that we gain smaller statistical (and possibly system-
atic) errors than the mass itself due to cancellation of systematics and removal of the ambiguity
associated with setting the lattice spacing. Using the samedata, we update the mass-ratio chiral
extrapolations by modifying the next-to-leading-order heavy-baryon chiral perturbation theory. We
find the finite-volume corrections are negligible accordingto ChPT estimates and the extrapolated
baryon masses agree with experimental values significantlybetter than with a linear extrapolation.
Preliminary results are shown in Fig. 2.
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3. Methodology: Cubic-Group Operators and Distillation

The Hadron Spectrum Collaboration (HSC) has been investigating interpolating operators pro-
jected into irreducible representations (irreps) of the cubic group [7] in order to better calculate two-
point correlators for nucleon spectroscopy. Baryon correlation functions were evaluated using the
displaced-quark operators described in Refs. [7] and employed in spectrum studies in Refs. [8].In
the cubic groupOh, for baryons, there are four two-dimensional irrepsG1g,G1u,G2g, G2u and two
four-dimensional irrepsHg andHu. (The subscripts “g” and “u” indicate positive and negative par-
ity, respectively.) Each lattice irrep contains parts of many continuum states. TheG1 irrep contains
J = 1

2,
7
2,

9
2,

11
2 , . . . states, theH irrep containsJ = 3

2,
5
2,

7
2,

9
2, . . . states, and theG2 irrep contains

J = 5
2,

7
2,

11
2 , . . . states. The continuum-limit spinsJ of lattice states must be deduced by exam-

ining degeneracy patterns among the differentOh irreps. Using these operators, we construct an
r × r correlator matrix and extract individual excited-state energies by fitting single- and multiple-
exponential functions.

However, the calculations using these cubic-group operators require multiple orientations in
order to maximally overlap with a wide range of quantum numbers, which is quite expensive.
Furthermore, as we go to lighter and lighter pion masses, there will be more decay modes open,
even for the lowest energy at a specific quantum number. We need to extend the matrix to include
the multiple-particle operators (so that we can further understand the nature of the “state” in our
calculation) and “disconnected” operators. Further, we need to to achieve better precision for each
state to distinguish among them.

A new way to calculate timeslice-to-all propagators, “distillation”, has been proposed in Ref. [9].
The method is useful for creating complex operators, such asthose used in the variational method,
allows the operators to be decided after performing the Dirac inversions and reduces the amount
of time needed for contractions. Distillation uses color-eigenvector sources to improve on noisy
estimators, giving better coverage of relevant degrees of freedom. Increasing the number of “hits”
improves statistics faster than 1/

√
N. The method can combine with stochastic methods, which

might be desirable if the number of sources needed to cover the volume becomes too large.
The distillation operator on time-slicet can be written as

□(t) =V(t)V†(t)→□xy(t) =
N

∑
k=1

v(k)x (t)v(k)†y (t), (3.1)

where theV(t) is a matrix containing the first throughkth eigenvectors of the lattice spatial Lapla-
cian. The baryon operators involve displacements (Di) as well as coefficients (Sα1α2α3) in spin
space:

χB(t) = εabcSα1α2α3(D1□d)a
α1
(D2□u)b

α2
(D3□u)c

α3
(t), (3.2)

where the color indices of the quark fields acted upon by the displacement operators are contracted
with the antisymmetric tensor, and sum over spin indices. Then one can construct the two-point
correlator; for example, in the case of proton,

C(2)
B [τd,τu,τu](t

′, t) = Φ(i, j,k)(t ′)τ (i,ī)
d (t ′, t)τ ( j, j̄)

u (t ′, t)τ (k,k̄)
u (t ′, t)Φ(ī, j̄,k̄)∗(t)

−Φ(i, j,k)(t ′)τ (i,ī)
d (t ′, t)τ ( j,k̄)

u (t ′, t)τ (k, j̄)
u (t ′, t)Φ(ī, j̄,k̄)∗(t), (3.3)
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where the “baryon elemental”

Φ(i, j,k)
α1α2α3(t) = εabc

(

D1v(i)
)a(

D2v( j)
)b(

D3v(k)
)c

(t) Sα1α2α3, (3.4)

which can be used for all flavors of baryon and quark masses with the same displacements on the
same ensemble, and the “perambulator”τ

ταβ (t
′, t) =V†(t ′)M−1

αβ (t
′, t)V(t), (3.5)

which can be reused for different baryon (and meson) operators after a single inversion of theM
matrix. There is a large factor of computational power savedby “factorizing” correlators in terms of
elementals and perambulators, and we can use the same elementals and perambulators to contract
various different correlators.

The distillation method is demonstrated on four nucleonG1g operators, two of which are local
to a single site and the remaining two having a singly displaced quark field. The corresponding
4× 4 matrix of correlators was computed on 316 configurations ofthe 163 × 128 (≈ 380 MeV)
lattice ensemble. Modeling the correlator noise-to-signal ratio with a+ b

Np as a function of the
number of distillation eigenvectors included (N in Eq. 3.1) gives a best-fit exponentp∼ 1.1(2); that
is, increasing the number of vectors decreases the noise considerably faster than simple statistical
scaling. The variational method [10] is used to extract the masses of the lowest two states in theG1g

spectrum. The extracted mass dependence on the number of eigenvectors is shown in the left panel
of Fig. 3. We find consistent masses among the larger numbers of eigenvectors, with an increase in
statistical precision as the number of vectors is increased.

A procedure called “pruning” is used to reduce the number of operators included. A practical
procedure is to calculate the correlators with the same source and sink operator (i.e. the diagonal
elements of the full correlator matrix) and sort them according to their “individuality”. One way to
systematically prune is to take the matrix of inner productsof the effective masses of each correlator
across all time slices and sort them from there. The middle panel of Fig. 3 shows a subset of various
G1g displacement-operator correlators sorted by the values oftheir inner products with respect to
one another. Any overlap larger than 70% is marked by yellow,while the remaining values are
depicted as magenta to blue colors. (G1g has the largest overlap amongst its opreators of all the
baryon irreps.) Notice that the inner-product matrix has a clear block structure when organized this
way. Each yellow block consists of a set of operators that yield nearly identical effective masses
as functions of time. We exclude many operators by such a selection process and pick a total of 24
operators among different quark orientations for each irrep. Then we refine to a smaller sub-matrix
of 8×8 by filtering the matrix by condition numbers; we perform a variational-method analysis on
the resulting 8×8 matrix and retain the lowest 4 eigenstates.

Fig. 3 shows preliminary results for nucleon spectroscopy with pion mass around 380 MeV
on a 163 × 128 volume, using “distillation” [9] withN = 32 eigenvectors. We observe a similar
distribution of states as the previous study. Further measurements on the larger volume and inves-
tigation of decay thresholds and potential two-particle states are underway. (See the proceeding by
K. Juge, reporting two-particle results using distillation.)
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Figure 3: (Left) The fitted energies for the first-excited (top) and ground state (bottom) as functions of the
number of distillation eigenvectorsN. (Middle) A subset ofG1g irrep operator correlators, grouped by their
inner product. The yellow blocks indicate overlap> 70%.G1g is the worst case among all the irreps. (Right)
Nucleon excited spectrum sorted according to cubic-group irrep.

4. Conclusion and Outlook
We report an ongoing effort to solve the mysteries of baryon resonances. The ground-state

baryon masses are in reasonable agreement with experiment and consistent among different groups
with different actions if systematics are taken into consideration. Our new technique, “distillation”,
will greatly improve precision in our future calculations for extracting excited-state masses using
cubic group-irrep operators, which provide powerful probes to extract highly excited resonances. A
preliminary result for nucleons onNf = 2+1 mπ = 380 MeV is shown in this proceeding. Work on
larger volumes (with a modified stochastic distillation) are on the way. Meanwhile, parallel work
from the HSC for meson spectroscopy with exotic quantum numbers and baryons using derivative
operators are also in progress. Multi-particle operators are under investigation to distinguish these
from resonances. We are also investigating the applicationof the distillation method to form factors
to help us understand the nature of specific states.
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