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We present results from an ongoing lattice study of the lowest lying charmonium and bottomo-
nium level splittings using the Fermilab heavy quark formalism. Our objective is to test the
performance of this action on MILC-collaboration ensembles of (2 + 1) flavors of light improved
staggered (asqtad) quarks. Measurements are done on 16 ensembles with degenerate up and down
quarks of various masses, thus permitting a chiral extrapolation, and over lattice spacings rang-
ing from 0.09 fm to 0.18 fm, thus permitting study of lattice-spacing dependence. We examine
combinations of the mass splittings that are sensitive to components of the effective quarkonium
potential.
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ensemble a (approx) (fm) | sea quark ratio myq/ms
Extra coarse 0.18 0.6,0.4,0.2,0.1
Medium coarse | 0.15 0.6,0.4,0.2,0.1
Coarse 0.12 0.6,0.4,0.2,0.15, 0.1
Fine 0.09 0.4,0.2,0.1

Table 1: Light quark mass ratios and lattice spacings for the ensembles used in this study. The strange quark
mass is set to approximately its physical value.

1. Introduction

The well-studied charmonium and bottomonium systems have long been used as a test bed for
phenomenological models and lattice methods. It is well known that including light sea quarks is
essential for obtaining good agreement with experiment. Few studies have carried out a systematic
treatment that includes both the chiral (sea quark) and continuum limit. The present study describes
progress to date in such an ongoing study [[l]]. It is based on charm and bottom masses that were
determined in previous studies [E]. We limit our attention to lattices with spacing a > 0.09 fm.
Table [[ lists the 16 ensembles used in this study [§—f]l.

We simulate the heavy charm and bottom quarks with the Fermilab action [f]],
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The energy of a single quark of spatial momentum p in nonrelativistic approximation is

2
P 4
E(p)=m+-—+0
(p) =i+ 50— +0(p").
where My is the rest mass and m, is the “kinetic” mass. They can be made equal if we tune the
temporal anisotropy {. Instead, we set { = 1 and limit our attention to mass splittings for which
the additive mass renormalization cancels. We also take cg = Cg = 1/ ug, where Uy is the tadpole
factor. These choices are explained in greater detail in [7]]. The resulting action is just the standard

clover action with the clover coefficient set according to the Fermilab interpretation.

2. Tuningthe heavy quark masses

There are a variety of possible ways to determine the masses (k’s) of the charm and bottom
quarks. Since we know the lattice scale from other measurements, determining the heavy quark
mass involves matching a lattice mass with an experimentally observed mass. Tuning to the rest
mass M; of quarkonium is clearly inaccurate, since it inherits the large additive renormalization
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ensemble a Kc Kb
Extra coarse 0.18 fm | 0.120 | —
Medium coarse | 0.15 fm | 0.122 | 0.076
Coarse 0.12 fm | 0.122 | 0.086
Fine 0.09 fm | 0.127 | 0.0923

Table 2: Tuned charm and bottom K’s.

of the quark mass m;. Tuning the kinetic mass M, of quarkonium is a possibility, but that mass
includes a strong binding energy that we would like to study independently of the tuning []. So
a cleaner approach tunes to the spin-averaged kinetic masses of the Ds = }JT]DS + %mD; and the
corresponding Bs multiplet [J, []. The heavy-light system has only a mild binding contribution.
In this way our study of quarkonium binding is more predictive. Results of tuning are shown in
Table fJ. Tuning errors are discussed in detail in Ref. [[7]].

All tuning methods should agree in the continuum limit. Discrepancies at nonzero lattice
spacing come from discretization artifacts that grow with ma, i.e., the quark mass in lattice units.
So, for example, at a = 0.15 fm we find that the tuned charm mass is approximately the same
whether obtained from the kinetic mass of the Ds multiplet or the kinetic charmonium mass, but
the tuned bottom mass differs significantly: Ky = 0.94 from tuning the kinetic bottomonium mass
and 0.76 from tuning the Bs multiplet.

Nonetheless, there are situations that require tuning the quarkonium rest mass. For our com-
panion study of charmonium annihilation effects, mixing between quarkonium states and glueball
states could be important [P]]. In this case it is important to arrange for a correct placement of the
unmixed charmonium and glueball eigenenergies of the lattice hamiltonian, i.e., the unmixed rest
masses [[[J]. However, in that study we hope for at best 15% accuracy in computing the tiny mass
shifts coming from annihilation, so we tolerate a mistuning of the kinetic quark mass.

3. Reaults

We measure quarkonium correlators with smeared relativistic and nonrelativistic S-wave and
P-wave sources and sinks. To extract masses, we use a multistate fit model with loose Bayesian
priors, and we determine statistical errors in mass splittings from a bootstrap analysis. We present a
sampling of results. More are given in [[]]. We examine them in terms of a traditional nonrelativistic
decomposition of the effective heavy quark potential, namely, central, spin-spin, spin-orbit, and
tensor contributions.

3.1 Charmonium hyperfine splitting

Hyperfine splitting provides a direct measure of the strength of the spin-spin chromomagnetic
interaction. In Fig. [l we show our results for charmonium hyperfine splitting. Here only the quark
line “connected” diagrams are included. The dependence on sea quark mass is evidently quite
weak. The continuum extrapolation, shown with kappa tuning errors included, gives 116(5) MeV
compared with 117(1) MeV from experiment. It would clearly be good to reduce K-tuning errors.
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Figure 1: Results for charmonium hyperfine splitting. Splittings are in r; = 0.318 fm units. (1/r; = 620
MeV). The left panel shows the chiral extrapolation with only statistical errors shown. The right panel shows
the continuum extrapolation in @ with kappa tuning errors of 6% included.

superfine  0.06 fm —3.4(3) MeV
fine 0.09 fm —5.5(8) MeV

Table 3: Contribution from charm annihilation to the charmonium hyperfine splitting

The contribution to the charmonium correlator and mass from quark line disconnected dia-
grams is expected to be small, so they are usually ignored. Because it is so small, it is a challenge
to calculate it [[J]. Our most recent results are given in Table .1} We find that annihilation pro-
cesses actually decrease the magnitude of the splitting. The effect is smaller than or comparable to
our current errors in the connected contribution.

3.2 Bottomonium hyperfine splitting

In Fig. Pl we show results for hyperfine splitting of the bottomonium ground state. The contin-
uum extrapolation gives 53(8) MeV. The 1y, was recently found [[[1}, [[] with a splitting of 71(4)
MeV from the Y(1S). The HPQCD collaboration reports 61(4)(13) [ using an NRQCD method
with a chromomagnetic interaction of a quality comparable to ours.

3.3 25— 1Slevel splitting

In Fig. [ we show results for the splitting of the spin-averaged 2Sand 1Slevels. This quantity
tests the “central” part of the quarkonium effective potential. We see that agreement with experi-
ment in the charmonium case is not good. It is better in the bottomonium case. Our fit model does
not include open charm states. So the 2Scharmonium state could be confused with the nearby open
charm threshold that comes closer as the light sea quark mass decreases. The dashed line locates



Quarkoniumwith Fermilab quarks L. Levkova

0v2 | T T T T T T T T
015 T T ‘ T T T T T T T T T T T T T T T T
- + i experiment  0.115(6) R [ )
w —~ r I 1
Z + X fine 0.062(4) 4 n LT i
£ z
5 + :[ coarse 0.061(1) 4 § 0.10 1— N
a 1 =3 r 1
, 0.1 1— med coarge 0.033(1) — = L 4
—_ I L i
@ - . =
= & i i
S b R . g 0.05— .
- = L 4
= | i Ky | |
0.0 | L L L L | L L L L | 0.00 b ‘ L ‘ L1 ‘ L1 ‘ L1
0.0 0.5 1.0 0.00 0.01 0.02 0.03 0.04
(l'tM,,)2 a? (fm?®)

Figure 2: The left panel shows the chiral extrapolation with only statistical errors shown. The right panel
shows the continuum extrapolation in a> with kappa tuning errors of 15% included, resulting in 53(9) MeV.

the physical open charm threshold. For the bottomonium case the open bottom threshold is safely
off scale.

3.4 1P — 1Ssplitting

The spin-averaged 1P — 1Ssplitting, shown in Fig. Hi, also tests the central part of the potential.
Within errors, our results seem to approach the experimental value.

3.5 Spin-orbit and tensor components

The contribution to the J = 0, 1, and 2 P-wave masses from the spin-orbit term in the quarko-
nium effective potential can be isolated with the combination

ml Pspinfurbil = é (5%2 - 2%0 - 3”\:1)

Our result is shown in Fig. . This term tests the strength of the chromoelectric interaction. In both
cases the results seem to approach the experimental value in the chiral and continuum limits.
Similarly, the contribution to the P-wave levels from the tensor component is proportional to
the combination
NP = 3 (3Me1 — Mea — 2Mp)

shown in Fig. . Since the tensor and spin-spin components both measure the strength of the
chromomagnetic interaction, here we divide by the 1S hyperfine splitting to see whether they are
proportional. It appears that they are not. Still the results seem to approach the experimental values
in the chiral and continuum limits.

3.6 Full spectrum

In Fig. [] we reconstruct the low-lying quarkonium spectrum from splittings, starting from the
experimental value for the spin-averaged 1Slevel.
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Figure 3: Splitting of the spin-averaged 2S and 1S levels in charmonium (left) and bottomonium (right).
The dashed line indicates the physical open charm threshold. Since the n), has not been observed the “ex-

perimental” point uses only the Y{(2S) in the splitting.

1.0

o
o
|

rM(IP) - rM(1I5)

o
o

% experiment

— X fine

med coarse

0.7374(5)
0.77(1)
0.83(4)

O extra coarse 0.79(1)

0.4

0.0

1.0

o
o

rM(1IP) - rM(IS)
o
o

0.4

3

experiment

— X fine

med coarse

0.737(2)
0.79(1)
0.93(4)

0.0

Figure4: Splitting of the spin-averaged 1P and 1Slevels in charmonium (left) and bottomonium (right).

4. Conclusion and Outlook

We have seen that in most cases quarkonium level splittings are quite insensitive to the light

sea quark masses. Systematic uncertainties in tuning the quark masses are much larger than our

statistical errors. With the present set of lattice spacings and the present level of precision, the

Fermilab action seems to perform well in the charmonium system, but there are indications that
lattice discretization artifacts affect some of our bottomonium splittings. Work currently underway
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Figure 6. The 1P tensor combination, divided by the 1S hyperfine splitting for charmonium (left) and

bottomonium (right).

seeks a more precise determination of the charm and bottom masses and will use the still finer

MILC-collaboration 0.06 fm lattices.
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