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1. Introduction

Calculation of the scattering phase shift represents awritapt step for expanding our un-
derstanding of the strong interaction based on lattice QiC@lyhamical aspects of hadrons. Since
Lischer derived a finite size formula for the two-meson sygia 1986 [1], which give us a relation
between the phase shift and the energy eigenvalue on the ¥islitlme, many lattice calculations
of the scatting length and the phase shift of the two-mesetesys have been carried with his for-
mula. Recently his formula was extended to that forkhresystem by Bernardt al. by using the
non-relativistic effective theory [2]. QCDSF collaboraticalculated the phase shift of this system
with this extended formula and study1232) resonance [3].

The extension of formula is necessary to extend our studyaoynsystems. In the present
work | consider a derivation of the formula for the eladtibl scattering system, where the formula
only for spin singlet state in the non-relativistic limithieh is same as that for the two-meson
system given by Luscher, has been known. My derivation iedbasly on the relativistic quantum
field theory and any effective theories for the two-nucletteriaction are not assumed. Further the
extension to thé\ 77 system can be easily done as discussed latter.

2. Wave function in infinite volume

First we consider the wave function in the infinite volume wledi by

@ (X K) = (0l Na (x/2) pg(—%/2) [K,An, Ap) , (2.1)

whereng (x) andpg(x) are interpolating operators of the nucleons #ady, Ap) is the asymptotic
NN state with momenturk, —k and the helicities\,, Ap . Using LSZ reduction formula, the wave
function can be written by
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, (2.2)

whereU, g (K, An, Ap) is a spinor for two free nucleons given By,g (K, An,Ap) = Ug (K, An)ug (=K, Ap)
with the one nucleon spinar(k,A). T(p,én,ép;K,An,Ap) is the off-shell scattering amplitude for
a processi(k, An) p(—k, Ap) — N(p, &) p(—p, &p).

We can estimate (2.2) in the regi¢t > R for the two-nucleon interaction rand by using
a integral formula

.
/ (gn?3 P2 J_I(kgxz (P = %T(i ik (k) f(k) - for F()=0 3

whereF (x) is the inverse Fourier transformation tfp). ji(X) is the spherical Bessel ami(x) is
the Neumann function, whose conventions agree with thofs] es adopted in [1]. This formula
is a extension of (A.11) in Appendix A in Ref. [4] to that folbérary value ofl and can be derived
by similar calculations of that paper.

From (2.3) we know that all values in the numerator of thegrdad in (2.2) can be replaced
by the value at on-shef) = k. The off-shell scattering amplitude(p, &n, &p; K, An, Ap) is replaced
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by the on-shell amplitude, which can be expanded as [6]

L (Qp) Dy (), (24)

T (Kep, &n, Epi K, Any Ap) = 16712\/5% b o (K) - No? N;2 DY)
whereN; = /(23 +1)/(41), A = Aq— Ap, & = & — &y and/s=2V/mZ + K2. In (2.4) the helicity
amplitude in the subspace of the total enexgy and the total angular momentudnis defined
by T;HJgMnAp(k) = (£:&p|TD (K)[AnAp). The functionD(), (Qp) = (IM|exp(—iady) exp(—iBdy)
exp(—iyJ;)|IM’) is the Wigner's D-function with the Euler angler,,y) = (¢, 6p, — @) for
momentunp = (psinB, cosg,, psinB, cosg,, pPcosy).

Using (2.3) and (2.4), we know that the wave function (2.2hregion/x| > Ris written by

0" (k) = % N3Dwia (Q) - (pjo’\"/\n/\p(x: k) (A =2A—Ap), (2.5)

o . . 3 : 3
B, (X K) =5 [JJanfp(X!k).aéno)fp-,)\n)\p(k)+NJanfp(X’k)'Bén§p7AnAp(k) . (2.6)
énép

wherea(’; ;. . (K) = (En&pll +iTO) /2|)\n)\ o) andBy) , . (K) = (&n&pl T /2 Anp), which cor-
respond toa(!) = cosd - -exp(id) andB =sing -exp(id) for the two-meson system with the
scattering phase shifi. In (2.6) the functlonJJMAnAp(x; k) is the wave function of two free nucle-
ons with the total energy/s, the total angular momentudi and the helicityAnA,. Its explicit

form is given by

J3Manr, (X; K) = LD )‘]JM/\)\ (x;k) R(O ) ‘JJM)\)\ X K)o gy (2.7)

where differential operatois(0) andR(0) are defined by

| (AT .M
L(0) = ((G.D/i)) CRO) = <| , %) , 2.8)

E+m

with E = vk2 +m?. In (2.7) the functlonJJM)\ A (x;Kk) is 2x 2 non-relativistic spinor defined by
I, 2, (%K) = Z‘]JMIS ~(IMISIIMARAD) (2.9)

Iiis(K) = J1 (kYT (/D (K) , Yiu(Q) = 5 Yim(Q)p(s. 1) - C(Im; s14;,.IM) , (2.10)
i

where the coefficientIMIs|JMA,Ap) is the transformation coefficient from the helicity basehte t
orbit-spin base(JMIls)-base) with the angular momenturand the spirs [6], andC(Im; su; IM)
is the Clebsch-Gordan coefficient for angular momentune stat) @ |su) and [IM). Qy is the
spherical coordinate fot. by (k) is the normalization constant of the state, which takés (k) =
(4mn)i' - (k% 4+ mP) for the usual relativistic normalization{u = 2E). ¢(s, ) is 2x 2 spin wave
function for two spin }2 particles with total spirsy. The functionNyy, 1, (X;K) in (2.6) is given
by replacingji (kx) by n;(kx) in (2.7). We can regard (2.7) as a relativistic extensiorhefrion-

relativistic spinord)\f, 2, (%K) to the relativistic onelyux,z, (x; k), so that the spinor satisfies the

Dirac equation. We use a notatidNR|r_gx for this relativistic extension like as (2.7) in the follow.
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Next we rewrite (2.5) and (2.6) by thHdMIs)-base as
P”(xk) = Z Comis(K) - Gimis(x;K) (2.11)
JMls
FrnsK) = 3 [ 06K - 015K+ Nowrs (K- B 00 (2.12)

with some constar®;wis(k), where functions of théJMlIs)-base are defined by

Imis(K) =3 i, (0GK) - (IMISIIMARA) (2.13)
A
J J
aiy (k) = E EZA A aén;p’AnAp(k) (IMI'S[IMEE ) (IMISIIMARA ) (2.14)
nSp/Anip

and Nyu, 1, (X; k) and Bl(,‘;{ls(k) are similarly defined. Here we should note tdas(x;k) and
Nymis(X; K) are not eigenstates of the orbital angular momentum andpihensth | ands. These
functions satisfy the Dirac equation, thus the upper antbtlier components have different orbital
angular momenta.

3. Wave function on the finite volume
Next we consider the wave function on the finite periodic bbxatume L2 defined by
@i (%K) = (0] na (x/2) Pa(—x/2) k) , 3.1)

where K) is the energy eigenstate witlfs = 2v/n? + k2 on the finite volume. Here we assume
the conditionR < L/2 for the two-nucleon interaction randgeand the lattice sizé&, so that the
boundary condition does not distort the shape of the twdencinteraction. In the regioR <

|X| < L, the wave function satisfies following two equations andibendary condition.

[i(y D)+ PE-m] gk =0, g(ck) [ iy D) +yE-m] =0,  (32)
O-(x+nL;k)=@-(x;k)  (nezd®), (3.3)

whereE = vm? + k2. The general solution of these equations can be written éjinkar combi-
nation of the Green function defined by

Gamis(x;K) = G\';II\FIIQIS(X; k)‘RfEX ) (3.4)
1 1 .

Ghiis(X: k) = %II\S/I(D)_g ——€"", D (P) =P -Yiu(Qp) , (3.5)
L> & p7—k

wherel = {p|p = (2m)/L-n, n € Z3} and Q, is the spherical coordinate f@. This Green
function is related to that introduced in Ref. [&]n(x; k) by
GIRs(XiK) = S mu Gim(X:K) - @(s, t)C(Im; sp; IM).

Using partial wave expansion &in(x;K) given in Ref. [1], we obtain

Gamis(X;K) = a (K)by (K) - Namis(x; K) +a (k) ) by (K) - Iymrrs(X;K) - M\g/slzﬂ’l”JMl(k) ,  (3.6)
Rl
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wherea (k) = (—1)'K'+1/(4m), by (K) is the normalization constant appeared in (2.10) and

J’M/VJI\/H ; Ml'm |m I n'{ Sll J M ) (Im,SH,JM) . (37)

The functionMy/qy 1m(K) in (3.7) is defined by (3.34) in Ref. [1], which is given by

Mrarim(®) = 3 T oo (6) . 0= KL/ (210 (3.8)
I//m/
(IR EE " 20+1 a1 Y/
e m = (=)' 14 @7+ 1)y [ 2572 -C01" 0 O)CIm; "l ') - (3.9)

1 1

Wm(q) = 7-[3/2q|+1\/m nezzfs n2 — q2

m(n),  Hm(n) = n “Ym(Qn) . (3.10)

4. Relation betweeng® and g~

In the following we restrict ourselves to the wave functionthe irreducible representation of
the rotational group on the finite volume (cubic group O),ahhis defined by

¢a (x:K) = (0] n(x/2) p(—x/2) ) (4.1)

where|k;a) is the energy eigenstate witls = 2/m?+k? and belongs to the irreducible rep-
resentation of O labeled Hy anda (o = 1...dimI" , I = {A1,A,E, T1, T>}). Projection of the
irreducible representation of SU(2)M)) to that of O (I"anJ)) is given by

|[IM) = rz IFand)-V(IM;Fand)*, [Fand)= %\JW (IM;Tand), 4.2)

with known coefficienV (JM; " anJ), wheren is the multiplicity of the representatidn

In the previous section the wave functions were expandeetimg of functions of théJMls)-
base {;uis andNjmis). But it is more convenient for the wave function (4.1) to arg in terms of
functions of(I" anJls)-base defined by

Jranais(X; K) = %JJ,WS(X;k) V(IM;Tand), (4.3)

with the coefficienV (JM; T anJ).
In the region|x| > R, the wave function (4.1) can be written by the linear comtiamaof the
Green function and also the wave function in the infinite woduas

(Hl:g (X; k) = Z EFanJIs(k) -Granyis(X;K) = ZcranJls(k) : (Hgoanms()(; k) ; (4.4)

with some coefficient&ranyis(k) andCrangis(k), whereGranyis(x; k) and @, ,,;<(X; k) are func-
tions of the(I"anJls)-base obtained by the transformation (4.3) fr@us(x; k) defined by (3.4)
and @iy, s(x; k) defind by (2.12). After some calculations we obtain

Z Eranais(K ( (K) - Nranais(x; K) + by (K) - Irawars(X:K) - M r(~|131|/ nJl(r;k)>
J !/
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= 3 Cronus(k) § (ranars () - a2 (T k) + Neanars (6 K) - Bi245(T3K) ) (4.5)
nJls

where the constarg (k) are removed by redefinition of the const&atngis(k), and
Bt St My (TR = S MSpy 3 (K) VI e’ YV (AM;Fand), (4.6)
MM’
Oyeys(TiK) = %al(,JS,)’IS-V(JM; Fand)V(IM;Fand) 4.7)

andBI(,Jg)’ls(r;k) is similarly defined. The diagonal property Mf(I"; k) in (4.6) for indices(l"a) is
result from the invariance dﬂj(,s,z,l/l,JM,(k) under the rotation on the finite volume (see Ref. [1]).

From (4.5), we know that coefficients of functiodgnis(X; K) and Nrqanais(X; K) relate each
other. After some calculations, we find that it is given by

det| M(T;k) — A(T;K)/B(T;k) ] =0, (4.8)

where we introduce a vector space spanned by indit#s) at fixed (") and define linear oper-
ators on this vector space by

. . . J :
M (r’k)]n'J'I's’,nJIs: Os- Mr(vs\;’l',nJl(r’k) ’ [A(r’k)]nJ’l’s,nJls: SOy al(’s),ls(r’k)/bl’(k) ’
(4.9)
andB(I'; k) is similarly defined. Equation (4.8) is a finite size formuba the elastid\ N scattering
system, which gives us a relation between the energy eifggnan the finite volume and the
quantity of the elastic scatteririy/B.

5. Finite size formula for NN system

In this section we show the explicit matrix form of the finiigesformula for theNN system
(4.8). Smatrix at fixedJ forms a 4x 4 matrix. This matrix is reduced to sub-matrices by the
eigenvalue of the global symmetry : the paryand the particle exchande (= (—1)" with the
iso-spinl) as

sV = 2x2matrix ; P= (=11, R=(-1)"1) . (5.1)

+ ( 1x1matrix ; P=(-1) ,R=(-1)
+ ( 1x1matrix ; P=(-1)° ,R=(-17"1

A(l; k) andB(I"; k) in the finite size formula (4.8) also take same form.

We note that the basis of the partial wave expandignjis(x; k) andNrqnais(X; K) in (4.5) are
eigenstates of the parity and the particle exchange Rith(—1)! andR = (—1)' - (—=1)5%. Thus
the wave function for the state witR= —P, only functions withs = 0 appear in the partial wave
expansion. For the state wikh= P, only functions withs = 1 appear. The mixing between=0
ands= 1 is forbidden by the symmetry of the parity and the partigiehange (iso-spin). Therefore
we can separately obtain the finite size formulaRet —R (s=0) andP =R (s=1).

In the case oR= —P (s= 0), the components of the mati (I'; k) in the finite size formula
(4.8) are given by

M (T3K) = Sy @ S Mywram(K) -V (Fand; IMY)V (Fand; IM) . (5.2)
MM/
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This is the same matrix as that appeared in the finite sizeuiardor the two-meson system.
Further,al(,Js)ls(k) = Oy 0y - a1 (K) andﬁlg)ls(k) = 93101 - B (K) with the diagonal components (k)
andp; (k) also take same matrix form as that for the two-meson systéms fhe finite size formula
for the NN system withP = —R (s= 0) is same as that for the two-meson system in Ref. [1].

In the case oR= P (s= 1), the matrixM (I"; k) andA(I"; k) /B(I"; k) have complicated struc-
ture. In the following we show explicit matrix form of the ftaisize formula for some channels as
example. We neglect contributions &£ 5. In this case the multiplicityl is 1 for all irreducible

representationk, thus we omit the inder in the formula (4.8) for simplicity, as

det| M(';k) — A(T;K)/B(T;k) ] =0, (5.3)

[MT3K)] 3y, 5 = Mr(vSJ)'I',nJl(r;k) o (AR gy g = Gra- al(,JS,)’IS(F;k)/bV(k) ;o (54

wheren=n' = 1,s= 5 =1 and the matriB(I"; k) is similarly defined.

The first example is the deuteron state. We have to considé&tNhstate with the total angular
momentumJ = 1 and the parityP = +1, which corresponds t8S; and®D; states in the non-
relativistic limit. TheJ = 1 state belongs to the irreducible representation of theécogitoup
' = Ty, thus we consider the finite size formula fore= T; for the study of the deuteron. The other
angular momentum states also belongtasT; = 1+ 3+ 4 up toJ > 5 and the finite size formula
includes contributions from all these states. For eachegahifJ, possible values dfare given by

|=0,2 forJ=1
|=2,4 forJ=3 , (5.5)
| =4 for J=4

from the parity conservation and the theory of addition & éimgular momentum. Thus matrices
M (T';k) andA(I;k)/B(I";K) in the finite size formula (5.3) take :

M1010 M1012 M1032 M1034 M1044 1
M1210 M1212 M1232 M1234 M1244

M = | Ma210 M3212 M3232 M323s Maoasa |, A/B=1] 0 0
Mz4.10 M3412 M3432 M3434 M34.44 0 0 0
Maa 10 Mag12 Magzz Magza Magas 0 0 0 0J=4

o o
wW oo

0
0
0o |, (56)

(&}
1l

where the boxes in the matrix/B which enclose the values dfrefer to 2x 2 or 1x 1 matrices
expanded by the possible valued oln (5.6) components of the matriM are denoted by 5 =
M (T;K)] 1 31 and are given by

Mz0,10 =Who
Mi210=0 M1212 = Wbo
Ms210=0 Maz1o=—5vBWao  Mspz2 =Who+ SWiag

Mzs10 = —2Wio Magio=—2V2Wio  Maszo = 39v/3WNyo+ 32v/3Wko
Magio=3VMWao Mo =—3vVIMiy  Magzz = 32v/2MWyo+ 13v21Wso

Maa.34 = Woo -+ B2Wio + W0
Masaa = — 20V Moo — BV Weo  Magas =Woo+ SWao+ 5Weo + 252Who , (5.7)
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whereMyyr 3 = My - and the functioy, is defined by (3.10).

Finally we consider the state with sahbut opposite parity to the deuteraa, J=1,P=—1.
We also consider the representatior- T;. Possible values dffor eachJ are different from those
of the deuteron case as

=1 fordJ=1
| =3 ford=3 . (5.8)
|=3,5 forJ=4
Thus matrices in the finite size formula take different forms
M1111 M1133 M1143 M1145 J=1/ 0 0 O
M — M3311 M3333 M3343 M3345 . A/B= 0 |[J=3|0 O | (5.9)
Masz11 Maz33 Maz a3 Mazas 0 O 124
Mss,11 Mas 33 Mas 43 Mas a5 0O O
Mi111 =Woo
Mag 11 = 3v/14Nyo Mag 33 = Who -+ 5 Wao — 22Wso
Mazi1=—3v210M0  Mazzs = — 35 V10— 32V 15060
Mas11 = 5v/42Wy0 Maszs = £V 3Wao+ 23v/3Weo
Mazaz = Who + 15 Wao — 2 \Wo
Mas a3 = 75 v/BWao — = v/BWeo — 822 v/BWgo
Mas 45 = Woo + %36\N40— 13—§5,W60 - %'5 0 - (5.10)

6. Summary

The finite size formula for the elastidN scattering system is derived from the relativistic
guantum field theory. The extension to other two-baryoresysis theNA system is trivial. Finally
| give a comment for th&l 7T system. The formulation of this paper for tN& system is also valid
for the system with the general value of the sgifThus the finite size formula for thérr system
can be easily obtained from that for tNé\ system (4.8) by set=1/2. In calculations of matrices
M (T; k), A("; k) andB(T; k) in (4.9), we change the coefficievitIM; " anJ) in (4.2) by that for the
double covered cubic group@®) to deal with the half integer value of the total angular neotam
J as discussed in Ref. [2]. | confirmed that my results are stersi with those obtained from the
non-relativistic effective theory by Bernaed al. [2].

This work is supported in part by Grants-in-Aid of the Mimjsof Education (N0.20540248).

References

[1] M. Luscher, Commun. Math. Phy$05(1986) 153; Nucl. Phyd$354(1991) 531.

[2] V. Bernard, M. Lange, U.-G. Meissner, and A. Rusetsky;. Bhys. J. A35(2008)281,
JHEP0808(2008)024 [arXiv:0806.4495].

[3] QCDSF Collaboration, M. Gockelet al., arXiv:0810.5337; these proceeding.
[4] CP-PACS Collaboration, S. Aokt al. Phys. RevD71 (2005) 094504.

[5] A. Messiah, Quantum mechanics, Vols. |, Il ( North-Holth Amsterdam, 1965 ).
[6] M. Jacob and G.C. Wick, Ann. Phy§(1959) 404.



