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Low-energy scattering ofD∗ and D̄1 meson are studied using quenched lattice QCD with im-

proved lattice actions on anisotropic lattices. The calculation is performed within Lüscher’s finite-

size formalism which establishes the relation between the scattering phase in the infinite volume

and the exact energy level in the finite volume. We obtain the scattering lengtha0 = 2.52(47)fm

and the effective ranger0 = 0.7(1)fm in JP = 0− channel. Based on these results, it is argued that,

albeit the interaction between the two charmed mesons beingattractive, it is unlikely that they can

form a shallow bound state in this channel. This calculationprovides some useful information on

the nature of the newly discovered resonance-like structureZ+(4430) by the Belle Collaboration.
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1. Introduction

Recently, a charged resonance-like structureZ+(4430) has been observed at Belle in theπψ ′

invariant mass spectrum ofB→ Kπ+ψ ′ decays [1]. This discovery has triggered many theoretical
investigations on the nature of this structure [2, 3, 4, 5, 6, 7, 8, 9]. Sincethe invariant mass of the
resonance is very close to theD∗D̄1 threshold, one possible interpretation is a molecular bound
state formed by theD∗ andD̄1 mesons [3]. To further investigate this possibility, the interaction
betweenD∗ andD̄1 mesons becomes crucial. As is known, the interaction of two hadrons can be
studied via the scattering process of the hadrons. Since the energy beingconsidered here is very
close to the threshold of theD∗D̄1 system, only threshold scattering parameters, i.e. scattering
lengtha0 and effective ranger0, are relevant. Here we briefly report our results obtained from a
quench lattice QCD study using improved actions on anisotropic lattices [10].

2. Strategies for the computation

2.1 Lüscher’s finite volume technique and its generalization

Within Lüscher’s formalism [11, 12], the exact energy eigenvalue of a two-particle system in
a finite box of sizeL3×T is related to the elastic scattering phase of the two particles in the infinite
volume. We define a variablēk2 for each diagonalized momentum mode via:

Ei =
√

m2
D∗ + k̄2 +

√

m2
D1

+ k̄2 . (2.1)

It is also convenient to further define a variableq2 as:

q2 = k̄2L2/(2π)2 . (2.2)

What Lüscher’s formula tells us is a direct relation ofq2 and the elastic scattering phase shift
tanδ (q) in the infinite volume and it reads: [12]

tanδ (q) =
π3/2q

Z00(1;q2)
, (2.3)

whereZ00(1;q2) is the zeta-function which can be evaluated numerically once its argumentq2 is
given.

In the case of attractive interaction, the lowest two-particle energy level might be lower than
the threshold resulting inq2 < 0. Whenq2 < 0, it is related to the phaseσ(q) via:

tanσ(q) =
π3/2(−iq)

Z00(1;q2)
, (2.4)

where(−iq) > 0 and the phaseσ(q) for pure imaginaryq is obtained fromδ (q) by analytic con-
tinuation: tanσ(q) = −i tanδ (q) [12, 13]. The phaseσ(q) for pure imaginaryq is of physical
significance since if there exists a true bound state at that particular energy, we have tanσ(q) =−1
in the infinite volume and continuum limit. In the finite volume, the relation above is modified
as: [13]

cotσ(q) = −1+
6

2π
√

−q2
e−2π

√
−q2

+ · · · , (2.5)
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where the finite-volume corrections are assumed to be small. Therefore, for q2 < 0, we could
compute tanσ(q) from Monte Carlo simulations and check the possibility of a bound state at that
energy.

The above formulae apply to the case of a box with cubic symmetry. In real calculations,
in order to have more accessible low-momentum modes, it is advantageous to use asymmetric
volumes in the study of hadron scattering [14, 15, 16]. If the rectangularbox is of sizeL× (η2L)×
(η3L), then Eq. (2.3) is modified to:

tanδ (q) =
π3/2qη2η3

Z00(1;q2;η2,η3)
, (2.6)

where the modified zeta-functionZ00(1,q2;η2,η3) is the analogue ofZ00(1;q2) and its explicit
definition can be found in Refs. [14, 15]. Similarly, for negativeq2, the formula is modified to:

tanσ(q) =
π3/2(−iq)η2η3

Z00(1;q2;η2,η3)
. (2.7)

Close to the scattering threshold, the phase has the following expansion:

k
tanδ (k)

=
1
a0

+
1
2

r0k2 + · · · , (2.8)

wherea0 is the scattering length andr0 is the effective range.

2.2 The operators and correlators

To access the on-particle and two-particle energies for theD∗ andD̄1 systems, we need corre-
sponding interpolating fields:

Qi(x) = [d̄γ ic](x),Pi(x) = [c̄γ iγ5u](x) (2.9)

whereQi(x) stands forD∗(2010)+ while Pi(x) stands forD̄1(2420)0 andi = 1,2,3 being the index
to specify different spatial components.

A single-particle state with definite three-momentumk is represented by the Fourier trans-
form of the above operators: which will be denoted asQi(t,k) and Pi(t,k) respectively. With
the operators, one-particle correlation functionsCQ(t,k) andCP(t,k) for theD∗+ andD̄0

1 mesons
are constructed. In the large temporal separation limit, the energyE(k) of a single meson with
definite three-momentumk can be extracted from the effective mass plateau of the corresponding
correlation functions as usual.

For the two-particle system formed by aD∗ and aD̄1 meson, the quantum numberJP of
the two-particle system can be:JP = 0−,1−,2−. On the lattice, the rotational symmetry group
SO(3) is broken down to the corresponding point group. In our case, in order to access more
non-degenerate low-momentum modes, it would be advantageous to use asymmetric box. This is
particularly useful for scattering processes, as advocated in Ref. [16]. Following this strategy, we
have adopted a rectangular box of sizeL× (η2L)× (η3L) with η2 = 1 andη3 6= 1. In this case,
the rotational group in the continuum is broken down to the basic point groupD4. In what follows,
we will construct operators that transform according to different irreducible representations of the
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D4 group which has four one-dimensional irreducible representations:A1, A2, B1, B2 and one
two-dimensional irreducible representation:E. The following decomposition rules then apply:

0 = A1, 1 = E⊕A2, 2 = A1⊕B1⊕B2⊕E. (2.10)

Now, we consider the vector space{Q1,Q2,Q3}⊗{P1,P2,P3}, which is 9-dimensional. Using
standard group-theoretical methods, it is easy to find out that this 9-dimensional vector space is
made up of two copies ofA1, one copy ofA2, B1 andB2 each and two copies ofE. The basis
operators of these irreps can be constructed and we found from our calculation that only one of the
A1 channels yields definite signal. In what follows, we will only focus on this particular channel
for which the two-particle operator reads:

O(A1)(1)(t) = ∑
R∈G

[Q1(t +1,−R◦k)P1(t,R◦k)+Q2(t +1,−R◦k)P2(t,R◦k)

+ Q3(t +1,−R◦k)P3(t,R◦k)], (2.11)

wherek is a chosen three-momentum mode andG is the groupD4 andR∈ G is an element of
the group. Note that in the above definitions we have not included orbital angular momentum of
the two-particles. Therefore we are only studying thes-wave scattering of the two mesons. This
is sufficient for this particular case since near the threshold, the scattering is always dominated by
s-wave contributions. The corresponding correlation matrix is given by:

C(A1)(1)
mn (t) = 〈O(A1)(1)†

m (t)O(A1)(1)
n (0)〉, (2.12)

wheremandn are indices for different momentum modes.
Two tricks can be utilized to calculate the correlation functions more efficiently.One is that the

summation overR∈ D4 in the definition of the two-particle operator in Eq. (2.11) can be absorbed
into the definition of the source when solving for the quark propagators. Another trick is that the
light quark propagators are needed for the zero momentum modeonly. Implementing these tricks,
the final result of correlation function according for the operatorO(A1)(1)(t) is as follows:

C(A1)(1)
mn (t) = ∑

R∈G

3

∑
i, j=1

[

∑
x

e−i(R◦p)·x · (γiγ5)σδ · (γ jγ5)α ′ρ ′ ·X(d)(α ′a′1)
δbxt+1 · ( ∑

R′∈G

X(c)(ρ ′a′1)
σbxt+1 (R′ ◦q))∗

]

·
[

∑
y

ei(R◦p)·y · (γi)ρβ · (γ j)γ ′σ ′ · ( ∑
R′′∈G

X(c)(γ ′b′0)
βayt (R′′ ◦q)) · (X(u)(σ ′b′0)

ρayt )∗
]

, (2.13)

with m andn being momentum mode indices with corresponding three-momentap andq, respec-
tively; R∈G being a group element ofD4; X being the quark propagators with appropriate sources.

2.3 The effective mass

For each symmetry channel, we have studied 5 different non-zero momentummodes in ad-
dition to the zero-momentum mode. To extract the two-particle energy eigenvalues, we adopt the
usual L̈uscher−Wolff method [11]. For this purpose, a new matrixΩ(t, t0) is defined as:

Ω(t, t0) = C(t0)
− 1

2C(t)C(t0)
− 1

2 , (2.14)
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β = 2.5 β = 2.8 β = 3.2

Nconf 700 500 200

as( f m) 0.2037 0.1432 0.0946

lattice 8×8×12×40 12×12×20×64 16×16×24×80

κc
max 0.0577 0.0598 0.0595

κud
max 0.0613 0.0611 0.0606

Table 1: Simulation parameters in this study. All lattices have the same aspect ratio:ξ = 5.

wheret0 is a reference time-slice. Normally one picks at0 such that the signal is good and stable.
The energy eigenvalues for the two-particle system are then obtained by diagonalizing the matrix
Ω(t, t0). Thei-th eigenvalue of the matrix has the following behavior in the large(t − t0) limit:

λi(t, t0) ∝ e−Ei(t−t0) . (2.15)

Therefore, the exact energyEi can be extracted from the effective mass plateau of the eigenvalue
λi .

The real signal for the eigenvalue in our simulation turns out to be so noisy that reliable plateau
cannot be found directly. Therefore, the following ratio was attempted:

R(t, t0) =
λi(t, t0)

CD∗(t)CD1(t)
∝ e−δEi ·t (2.16)

whereCD∗(t) andCD1(t) are one-particle correlation function with zero momentum for the corre-
sponding mesons. By taking this ratio, the signal to noise ratio is greatly enhanced. The energy
differenceδEi can be extracted reliably from the following effective mass:

δEi = Ei −mD∗ −mD1 = ln

(

R(t)
R(t +1)

)

. (2.17)

3. Simulation details and results

The gauge action use in this study is the tadpole improved gauge action on anisotropic lat-
tices [17, 18, 19]. Quenched gauge field configurations are generated using the conventional
Cabbibo-Mariani pseudo-heat bath algorithm with over-relaxation. Quark propagators are obtained
using the so-called Multi-mass Minimal Residual (M3R) algorithm, which can yield the propaga-
tors with different quark masses at one inversion [22]. Dirichlet boundary conditions are used in
the temporal direction for the fermion fields. Error estimates are made using theconventional jack-
knife method for all quantities. All the relevant simulation parameters are summarized in Table 1.
Some of the parameters have been obtained or tuned in Ref. [23, 21].

From the single-particle correlation functions, both with zero and with non-zero three-momenta,
we have checked that the masses and dispersion relations for the single particle states ofD∗ andD̄0

1.
With Lüscher’s formalism, we obtain the scattering phase shifts, which are fitted near the threshold
to obtain the scattering length and the effective range inA1 channel. After charm quark mass inter-
polations, chiral extrapolations and continuum extrapolations (fora0 andr0), the results are shown
in Table 2.
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β q2 cotσ(q2) a0 r0

2.5 -0.026(0.003) 5.23(0.65)
2.8 -0.064(0.005) 0.16(0.18) 2.53(0.47)fm 0.70(0.10)fm
3.2 -0.053(0.016) 0.92(0.93)

Table 2: Results for the lowestq2 and the corresponding values for cotσ(q) as given by Eq. (2.2) and
Eq. (2.7) anda0 andr0 as given by Eq. (2.8). Corresponding errors for the quantities are also given in the
parenthesis.

To explore the possibility of a bound state, we recall that for a bound state toexist,q2 has to be
negative and in factq2 →−∞ asL → ∞. This results in the condition: cotσ(q) = −1 as discussed
in the subsection 2.1, Eq. (2.7). On the other hand, a scattering state will have: q2 ≃ (1/L) as
L → ∞. Results for the lowest (negative)q2 and the corresponding values of cotσ(q) as computed
from Eq. (2.7) are listed in Table 2. It is seen that our results for cotσ(q) for the lowest (negative)
q2 are allpositive. The absolute values for the lowestq2 are also not large, not in favor of a shallow
bound state.

One could investigate this possibility from the values of scattering length and effective range.
Since we are studying the scattering near the threshold, it is appropriate to study the problem using
non-relativistic quantum mechanics. Within non-relativistic quantum mechanics, it is known that,
if the potential acquires an infinitely shallow bound state, the scattering length should approach
negative infinity[13]. Our lattice results for the scattering lengths indicate that it is quite large but
positive. This usually happens when the potential is on the verge of developing a shallow bound
state.

If we further approximate the potential by a square-well potential, we couldeven estimate
the depthV0 and the range of the potentialR from our lattice results ona0 andr0. We find that,
R= r0 = 0.70(10)fm andV0 = 73(21)MeV. These values for a square-well potential also gives no
bound states. If we fixr0 = R= 0.7fm, the first bound state will occur at aboutV0 ≃ 92MeV.

4. Conclusions

In this paper, we present our quenched anisotropic lattice study for the scattering ofD∗ and
D̄1 mesons near the threshold. Our study focuses on thes-wave scattering in the channelJP = 0−

and the scattering threshold parameters. After the chiral and continuum extrapolations, we obtain:
a0 = 2.53(47)fm andr0 = 0.70(10)fm, indicating that the interaction between aD∗ and aD̄1 meson
is attractive in this channel. Based on our results for the the threshold parameters, it is unlikely that
they form a genuine bound state right below the threshold in the channelJP = 0−. The lowest
two-particle state is likely to be a scattering state. This result might shed some lighton the nature
of the recently discoveredZ+(4430) state by Belle. To further clarify the nature of the structure
Z+(4430), lattice studies in other symmetry channels and preferably with dynamical fermions are
much welcomed.
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