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Recently a new approach to calculate the nuclear potential from lattice QCD has been proposed.
In the approach the nuclear potential is constructed from Bethe-Salpeter (BS) wave functons
through the Schroedinger equation. The procedure leads to non-local but energy independent
potential, which can be expanded in terms of local functions. In several recent applications of
this method, local potentials, which correspond to the leading order (LO) terms of the expansion,
are calculated from the BS wave function at E ~ 0 MeV, where E is the center of mass energy.
It is therefore important to check the validity of the LO approximation obtained at £ ~ 0. In
this report, in order to check how well the LO approximation for the NN potentials works, we
compare the LO potentials determined from the BS wave function at E ~ 45 MeV with those
at £ ~ 0 MeV in quenched QCD. We find that the difference of the LO potentials between two
energies are not found wihin the statistical errors. This shows that the LO approximation for the

potential is valid at low energies to describe the NN interactions.
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1. Introduction

The nucleon-nucleon (NN) potential is widely used in nuclear physics. Once the NN potential
is known, one can, in principle, determine various structure of nuclei, by simply solving the cor-
responding Schrodinger equation. In the past few decades, several different NN potentials, such
as phenomenological potentials determined from the fit of NN scattering data with x2/dof ~ 1
at Tiap < 300 MeV [l 2 Bl or potentials based on effective field theory [l], have been proposed.
Although these potentials can reproduce the scattering data to a quite good accuracy, they have a
drawback that they need a large number of parameters to describe the phase shift of the NN scat-
tering (AV g needs 40 and ChPT in N3LO needs 24 parameters. ). In this respect, the NN potential
from Lattice QCD proposed in Ref. [ [@ [7]] has an advantage: It requires only a few fundamental
parameters of QCD, the gauge coupling constant g and quark masses m,,mg,m;, - -, so that the
method can be also applied to hyperon systems (NA,NX ...) [Bl], for which only a limited number
of experimental information is obtained so far.

Recently Hadrons to Atomic nuclei from Lattice (HAL) QCD collaboration is formed to study
various aspect of baryon-baryon potentials based on the first principle of QCD. In the approach
by the HAL QCD collaboration, the non-local but energy-independent potential U (r,r’) is first
constructed from the Bethe-Salpeter (BS) wave function via the Schrodinger equation [B] [l [7]).
The non-local potential U(r,7’) can be described in terms of local functions using the derivative
expansion, whose leading order contribution gives the local potential. In several applications of
this method, the leading order local potentials have been evaluated at zero energy in the center
of mass frame. Therefore, in practice, it is important to know at which energy range the leading
order local potential is accurate enough to approximate the non-local potential U (r,7’), which is
faithful to the scattering data by construction. In this report, we extract the leading order local
potentials at non-zero energy from the quenched lattice QCD simulation, and compare them with
those previously obtained at zero energy. A difference between them gives an estimate of higher
order correction in the derivative expansion.

This report is organized as follows. In section Pl we give a brief review of the method to
extract the NN potential in Lattice QCD using the derivative expansion. In section[3] we compare
the leading local potentials between zero and non-zero energies. We have found that a difference
between them is small compared to statistical errors. In section @l we consider contaminations to
the potentials from excited states, which become manifest at large separation where the potential is
expected to vanish. Section[Jis devoted to summary and conclusion.

2. NN potential from Lattice QCD

The non-local potential U (7,7') is constructed from the equal-time Bethe-Salpeter (BS) wave
function ¢ (¥, k) through the Shrodinger equation [[6] [7] as

(A+K) ¢(Fk) :mN/d3 Y UFT) o7 k), (2.1)

where "k" denotes the “asymptotic momentum”, which is related to the total relativistic energy

WasW =2, /mlz\, + k2. The derivative expansion up to v, together with various constraints from
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symmetries leads to the conventional form of the NN potential at low energies widely used in
nuclear physics [9:

— —

URT) = [Vo(r) +Vs(r) (01-02) + Vi (r) Sz +Vs(x) L-S+60(V?)| 8(F~7),  (2.2)

= 3(6;- 7)(G, - F)/r* — G} - 6, is the tensor operator, S= (G} + G>) /2 is the total
spin, L = 7 X J is the orbital angular momentum, and I = 0, 1 is the total isospin. Note that L - S,

which is ﬁ(%), is of next-to-leading order in the expansion. Eq. @J) with 22) successively
determines local functions V{(x) (A = 0,0,T,LS, ).
The BS wave function on the lattice with the lattice size L is defined by

7k L3Z op (Oliig (F+X) pa(X)|B = 2 W), W =2y/m% +k2, (2.3)

where W is the total energy of the two nucleon system in the center of mass system, and P"ﬁ denotes
a projection operator to the spin singlet state (PS 0 = (G2)q,p) or triplet state (P ﬁl = (01)q,p) for

spinor indices o and 3. Local composite operators for the proton and the neutron 7 and p are given
by

Ag(y) = €ave (l1a(y)CYsdp(y)) dep (y), Pa(x) = €ave (e (X)C¥sdp (X)) e (x),  (2.4)

where, a, b, c denote color indices, and C is the charge conjugation matrix.
In this report, we consider potentials for the ISy state and the 3S; — 3D, state. In the case of
15y state, the Schrodinger equation at leading order becomes

(D4R % (rik) = 21V (r)9 (k) 25)
for the spin singlet channel (S = 0) with the reduced mass 4 = my /2, where the wave function
¢'So (r;k) for the 'Sy state is given by the projection P as

1 o =

¢ % (r;k) = PO(F:k) = — Y ¢°(R[F]:k). (2.6)
Here the summation over R € O is taken for the cubic transformation group to project out the A;
state. Then the central potential is easily obtained as

| 1A' (r;k)
VS = Vi(r)—3V) E+——=—"—"—
(r) 0(”) G() +2“ ¢)150( ) )

where E (= #) is an effective kinetic energy in the center of mass system.

2.7

For the spin triplet channel (S = 1), the Schrodinger equation at leading order becomes more
complicated due to the mixing between >S; and *D; components by the tensor potential:

(A+E)9" (F5k) = 2u{Ve(r) + Vi (r)S12} o' (7:k) (2.8)

where V.(r) = V0(r) + V2(r). By two projections P and Q = 1 — P, the above Schridinger equation
is decomposed as

POLFK) PS9! (1K) | (Ve(r) ) _ A4k (PO (:K) 2.9)
00! (F;k) 08120 (k) ) \ Vr(r) 2u \ Qo' (7k) )’ '

from which V,(r) and V7 (r) can be separately obtained|[[I0} [7]].
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3. Numerical Simulations and results

3.1 Lattice QCD setup

We employ the standard plaquette gauge action on a 323 x 48 lattice with the B = 5.7 for
quenched gauge configurations. Quark propagators are calculated by the Wilson quark action at
k = 0.1665. This setup leads to the lattice spacing a~! = 1.44(2) GeV (a ~ 0.137 fm) from m,,
the spatial extension L = 32a ~ 4.4 fm, m; ~ 0.53 GeV and my ~ 1.33 GeV [[MJ]. Quenched
gauge configurations are generated by the heatbath algorithm with overrelaxation. Potentials are
measured on configurations separated by 200 sweep. 4000 configurations are accumulated to obtain
results in this report. These calculations are performed on Blue Gene/L at KEK.

The BS wave function is obtained from the four-point correlator of nucleon operators in the
large ¢ region,

G (E,3,1,00) = (0lftp (3.1) pa(F,1) Fpn(10)[0) ZA (Ol (7) P (%) |B = 2 W)l =10

~ Ao(0]iip (¥) pa(¥)|B = 2; Wp)e Mol —10), W, =24/ m% + k2. (3.1

Here the source located at t = 1, / on(t0), is defined by

Fon= Pg/,;/pa/(to)lvﬁ'(to), Py = €4pc (UlCVsDy)Ucar, Np = €4pc (UsCYsDp) D,

where
= YueD)fF),  D)=)dr.Df(X), (3.2)
H H
where f(x) is source function, as will be seen later. By examining the ¢ dependence of potentials,
we see that ground state saturations for potentials are achieved at r —#y = 9.

3.2 Periodic and anti periodic boundary conditions

The periodic boundary condition (PBC) is imposed on the quark fields along the spatial direc-
tions to obtain the NN potential at E ~ 0 MeV, while the anti-periodic boundary condition (APBC)
is employed for the NN potential at E ~ 3 x (7/L)? /my, which corresponds to 45 MeV in the cen-
ter of mass system. For the PBC, we employ the wall source, i.e., f(¥) = 1 , which enhance ground
state of PBC, p = (0,0,0)7/L. On the other hand, for the APBC, we employ four types of mo-
mentum wall sources, f(X) =cos((x+y+z)n/L), cos((—x+y+z)w/L), cos((x—y+z)m/L), and
cos((—x—y-+z)m/L), where these sources enhance the ground state of APBC, i.e., p= (1,1,1)n/L
state. Here, we have imposed positive parity to the system by using the wall source with a cosine
type instead of an exponential type. After the summation over the results of four sources, the A;
representation is obtained. To improve the statistics for the PBC case, we locate four sources on
different time slices on each configuration.

To evaluate the central potential by eq. (2.7), we need to determine the first term, k%/2u,

which, in principle, is obtained through the relation Wy = 2 /m3, + k2. Within statistical and sys-

tematic errors, however, the values of k2 turn out to be close to the free values. We therefore adopt
the free values, E = k*/my = 0 MeV (PBC) and E = k*/my = 3(n/L)?/my = 45 MeV (APBC),
to calculate potentials in this report.
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Figure 1: Comparison of local potentials with the PBC (blue open circle) and the APBC (red closed circle)
att —t9o =9 and r < 2.0 fm. The left figure shows the ISy central potential, while the center and the right
represent the S —3 Dy central and tensor potentials, respectively.

3.3 Comparison of local potentials between two energies

In Figure[Il we compare potentials at the leading order of the derivative expansion obtained at
E ~ 45 MeV (red circles) with those at E ~ 0 MeV (blue circles), for the VISO(r) (the left), V.(r)
(the center) and Vr(r) (the right). All data are taken at t —fp = 9, where grand state saturations
for the potentials are achieved. From these figures we observe that the agreement of potentials
between two energies is quite good for all cases within the statistical errors. We therefore conclude
that the leading order contribution in the derivative expansion gives a very accurate approximation
for the energy-independent non-local potential U (7,7) in the energy range from E = 0 MeV to
E =45 MeV, in the case of the quenched approximation at m; ~ 530 MeV. Note that the NLO
contribution is absent for the spin-singlet channel while the NLO V; ¢ potential exists for the spin-
triplet. The agreement of V, and V7 between two energies suggests that Vys(r) is sufficiently small
below E = 45 MeV, at least for m; ~ 530 MeV.

4. Contamination from excited states at large distances

Results in the previous section show that the local potentials obtained from the BS wave func-
tion at E ~ 45 MeV agree well with those at E ~ 0 MeV. One may notice, however, that potentials
obtained at £ ~ 45 MeV (APBC) deviate from zero at large r, where potentials are expected to
vanish. These deviations are not statistical fluctuations , as seen in Fig2l where the local potentials
obtained with the APBC are plotted as a function of r att — o = 3,6,9: Deviations of the potentials
from zero at large distances have characteristic structures, which are most clearly seen at t —#y = 3,
and the deviations decrease as t — fg increases. These observations suggests that the deviations of
the potential from zero are caused by contaminations of excited states.

Here we discuss how contaminations of excited states to the BS wave function affects the form
of the corresponding potential. Let us assume that the BS wave function extracted from the 4 point
function is dominated by the grand state with a small contamination of one excited state as follows.

¢(?7t) = W(?ako) e*Wo ' + W(?a kl) €7W1 [7 (kO < k1)7 (41)

where W, = 2/m% + k2, and y(#,ko) is the BS wave function of the grand state with Eg = k3 /my

while (7, k;) is the wave function of the excited state with E; = k% /my. At sufficiently large r,
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Figure 2: These figures are 'Sy central potential with the APBC at ¢t — #y = 3 (left), 6 (center) and 9 (right).
These potential deviate from zero at r > 2 fm. Deviations of potentials are decrease as ¢ — fg increases.

we assume that both wave function satisfy

1

m—N<A+k%) v(7,ko) =0 4.2)
1

m—N(A+k12) v(7,k) = 0. 4.3)

By inserting eq. (.1 into eq. 2.7)), we arrive at the following expression:

— 1 A(P(?,t) k% r—o0 1 2 2 —
Viix () = — _,74‘7—’7](—]( Pl’, 4.4
( ) my ¢(r,t) my mN( 1 O) ( ) ( )
where P(7) is given by
7.k
PP = LAGLY et Wi=Wo) (4.5)

y (7, ko) + w (7, kl)e_t(Wl—Wo)

We see that, even in the non-interacting region where the true potential V (¥) vanishes, eq @.4)
leads to a non-vanishing "potential” as

ki =k

my

Viix (F) = P(7) #0. (4.6)

The agreement of local potentials between two energies indicates that the effect of these con-
taminations to potentials is smaller than statistical errors at short distance (r < 2.0 fm). Therefore
the conclusion in the previous section remains true. Since the true potentials vanish at long dis-
tance, however, the small effect due to the contaminations can become significant. Note that the
APBC implies that not only the numerator but also the denominator of P(7) vanish at boundaries,
so that P(¥) could become large near boundaries. The consideration so far suggests that the devi-
ations of the potentials from zero with the APBC at large r is caused by the contaminations from
the excited states. Our choices of momentum wall sources creates not only the grand state with
P = F(&£1,£1,+£1) but also the excited state with j = 7(43,43,+3). Moreover the energy dif-
ference in lattice unit is not so large: W; — Wy ~ 0.23/a (~ 360 MeV) in this case. Therefore it
is likely that the contamination comes from the (3,3,3) excited state. This observation, however,
needs to be confirmed, which is now underway.
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5. Summary and conclusion

We have examined how well the leading order contributions in the derivative expansion of
the non-local potential U (r,r") describe the NN interactions in the wide range of energy. We have
compared the local NN potentials for the 'Sy state (the central potential) and for the 3S;,—*D; state
(the central and the tensor potentials) obtained at £ ~ 45 MeV with those obtained at £ ~ 0 MeV
in quenched QCD at m; ~ 530 MeV. We have found that differences of these potentials between
two energies are very small. From this result we conclude that the leading order local potentials in
the derivative expansion are good approximations for the NN potentials at energy up to 45 MeV in
quenched QCD, and that the local potential constructed at £ ~ 0 MeV can be used to investigate
properties of the NN interaction at low energy.

In the future it is important to apply the analysis in this report to the NN potentials in full
QCD at lighter pion mass and to more general potentials including hyperons, in order to confirm
the validity of the leading order local potential approximation for these cases.
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