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We calculate the generalized form factors associated withone derivative axial and vector
operators in two flavor Wilson-twisted-mass QCD. At zero reotom transfer these reduce to
the first moments of parton distributions, the momentumtimac(x) and the spin fractioAx).
We briefly describe our non-perturbative renormalizatioocpdure, which is done in the RI'-
MOM scheme. The calculation of physical observables isi@dmut at different pion masses,
down to approximately 300 MeV at a lattice spacing of abo089.fm and in a spatial volume of
about 2.1 fm.
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Nucleon GPDs from tmQCD Tomasz Korzec

1. Introduction

Lattice QCD calculations of observables related to the structure of bagrertsecoming in-
creasingly relevant since direct connection to experiment can now be.mad is due to the fact
that systematic uncertainties caused by a finite volume, a finite lattice cut-afiguiysically high
pion masses are becoming better controlled. Nowadays a humber of majbocatians are pro-
ducing results on nucleon form factors and the first moments of partoibdisins closer to the
physical regime both in terms of the pion mass and the lattice spddifl[J1[] BB, @eneralized
parton distributions (GPDs) encode important information related to batyoctgre and can be
studied in a systematic way. While experiments are able to measure convoluiti®eR®s, lattice
QCD allows us to extract generalized form factors of operators like

a a
Gt = Gl Drsy Ty gt~ gDl DRy (L)

from which GPDs can be reconstructed via inverse Mellin transforms.spieial case afi =0,
for which eq. [1]1) reduces to the vector and axial current with thecated Dirac, Pauli and axial
form factors, is treated separately and results are outlined i refn[€}id work we concentrate on
then= 1 case for which the nucleon matrix elements can be decomposed in termseh#nalied
form factorsAog(0?), B2o(0?), Cao(q?) andAxo(q?), Boo(of), as follows,

_ io‘{“a v} 1
(N(pr,0) 4" IN(P1,S)) = 0(Pr.51) [Aeoy 6 + Boo " — 19— 1 Co0—qfHq! | u(pi,s).
(1.2)
_ ~ ~ QtHgv!
<N(Df,Sf)Iﬁ‘}‘fv\N(IOi,S»:U(pf,Sf)[i°~2o)/{“clv}¥/5+Bzoq2::1 VﬂU(pi,S)- (1.3)

Hereq = ps — pi is the momentum transfeq is a Dirac spinor and the brackefs} stand for
symmetrization over all uncontracted indices and subtraction of the traces.

2. Extraction of the generalized form factors

We work with two degenerate dynamical flavors of twisted mass Wilson fernaiodsvith a
tree level improved Symanzik gauge action. For simulation details the reaeééerised to ref.[[[7].

Methods developed for the extraction of ordinary nucleon form fadffjrsarry over almost
unaltered to the present case. We calculate the following two- and threfyomitions

Ze XA, (Ja(te,%6)3(0) (2.1)
Guv(P.at) = XZX g, (Ja(th, %) Oy (t,%)35(0)) (2.2)
and form the ratios
Ruv(T,4,t) = “Vﬁr’q’t> \/G@’tf_t)e(a’we(a’tf). (2.3)
G@O,tr) | G(O,tr —t)G(d,t)G(d,tr)
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Like in the preceding calculations of masses and form factors, the pragmpatating fieldJ(x) =
€3¢ [UAT (x)€'y5d°(x)] UC(x), is constructed from smeared quark fields (here and iaterdd de-
note the quark fields in the physical basis). Gaussian smearing of the ferinal APE smear-
ing of gauge-fields entering the smearing function are employed with thenptees tuned as in
ref. [B]. The sequential inversion “through the sink” technique thatiseshere forces us to fix the
source-sink separatidpn —t; = 12a, the smearing parameters and the mdirat the beginning of
the calculation. The advantage is that any local or non-local bilineantperarrying an arbitrary
lattice momentum can be inserted without the requirement of further inversioriact the four
choices™® = 1/4[1 + y], T* = iM%y are identical to those used in the calculation of Sachs and
axial form factors. For sufficiently large separatidps-t andt —t; the ratio of eq[ 2]3 exhibits
a plateau and we denote the fitted plateau valu€lpy(I",d). From renormalized plateau values
Mg = Z I the generalized form factors can be extracted. All valueg dsulting in the same
d?, the four choices of and the ten orientationgv of the operator lead to an over-constrained
system of equations which is solved in the least-squares sense via a siraluéadecomposition
of the coefficient matrix. The coefficients follow from the matrix-elemenibagosition given in
eg. (L.2) and may depend on the energy and mass of the nucleon as weltresinitial spatial
momentump; = —d. It turns out that both the operators with= v and it ## v are necessary to
obtain all three vector form factors. Since those two classes of opgrm@tca hypercubic lattice
renormalize differently from each othdp [9], renormalization has to baechout already on the
level of the ratios. Fig:]1 shows some of the plateaus we observe in the ratios
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Figure1l: Ratios for the one derivative vector (left) and axial (rigbperator for a few exemplary choices of
the momentum. The solid lines with the bands indicate thedfiflateau values with their jackknife errors.

3. Non-perturbative renormalization

The operators defined in eq. (1.1) require renormalization. We computetiessary renor-
malization constants in the RI'-MOM scheme at different renormalization scale-perturbatively
and use perturbation theory to translate them to the poM@scheme at 2 GeV. A similar proce-
dure has been employed by the authors of fef. [10]. In addition, wieasilperturbatively to one
loop the&'(a?) contributions as described below. For the present calculation we will theeahe



Nucleon GPDs from tmQCD Tomasz Korzec

derivative vector operator with = v (Zyp1), the one derivative vector operator wiih~ v (Zyvp2)
and the one derivative axial operator wjth# v (Zap2).
The operators can all be written in the form

0=3% U7 (z2)d7), (3.1)
Z

where _# determines the operator, e.g# (z,Z) = &7y, would correspond to the local vector
current. For each operator we define a bare vertex functiosn I2matrix) given by

al2 _ _ _

G(p) =~ 5 €PN 7 (z2)dZ)d(y)), (3.2)

v X,y,2,Z
wherep is a momentum allowed by the boundary conditions, and the gauge averagéised
over gauge-fixed configurations. We fix to Landau gauge using aagticlover-relaxation algo-
rithm [L3]. In this work, we do not address questions related to the Gabaiguity.

The propagator in momentum space is defined by

8 ) 8 ) —
Si(p) =y PN URAY) . S =y YT ([ANdy), (3
Xy Xy

and an amputated vertex function is given by

r(p) = (S'(p)~*G(p) (S"(P) " (34)
The corresponding renormalized quantities are
S(pP) = ZgS(p), MR(P) =2Z4'ZoT(p), (3.5)
with Z-factors determined by the renormalization conditions of the RI'-MONEsce
L s 1(p) g0 _ 1 (0)-1 _
BSOSO =1 and Sulra(pr® o) =1,

wherey is the renormalization scale astf) andlr© are tree level expressions f8andrr. These
are imposed in the massless theory, i.e. at critical mass and vanishing twistedWeasvaluate
eqg. {3.2) and eq[(3.3) for each momentum separately employing Fourieeso Alternatively one
could exploit translation invariance to shift the operator position infed. (8 @sitionz= 0 in each
term. This would allow for an evaluation of the vertex function with all possiblenerta at the
cost of one set of inversions per configuration, but would lead tolatgéistical errors. This sec-
ond method has been carried out for local bilinefrk [12] and one of-tlezitative operatorg [1L.3]
on the same configurations, leading to compatible results.

Chiral extrapolations are necessary to obtain the renormalization factibes ¢hiral limit. As
can be seen in Fif] 2 for six different renormalization scales, the piondeasmdence is very mild
and a linear extrapolation suffices. We use a 1-loop expressibn [1@htert our results to the
MS-scheme and a 2-loop formulg]10] 14] to evolve the renormalization scale thqu = 2GeV.
If a “renormalization window” exists wher%, << u? << 1/a* holds, we expect a plateau. In
reality the upper inequality is not satisfied and we see pronounced latticctstif our results.
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Figure2: Chiral extrapolations of the Z-factors for six differenhoemalization scales.

Fortunately recent perturbative calculatiohg [15] allow us to subtragighterbativeO(a?) lattice
artifacts to one loop, which alleviates the problem. To remove the remaiigtp?p?) artifacts

we extrapolate linearly ta?p? = 0. The statistical errors are negligible compared to the systematic
ones. The whole procedure is demonstrated in[fig. 3. Our preliminarjsésuthe Z-factors in
theMS-scheme at ZeV are

Zovi=117(2),  Zova=1159),  Zppo=119(1). (3.6)

The error is the systematic error due to the extrapolation, namely the ditebeEtween using all
points or just the higher four ones. Statistical errors are at least diee afrmagnitude smaller.

4. Results

In Fig. B we show our results for the renormalized generalized formraofthe one deriva-
tive vector operator. Qualitative features, like the orderinggf Bog andCyg or the momentum
dependence are in agreement with the results of [flef. [1]. Quantitatieebg\rer our results are
larger and closer to those obtained by the QCDSF collabordfion [3]. Satheub and the QCDSF
collaboration use a non-perturbative renormalization this perhaps madjribatad to the different
renormalization procedures (perturbative versus non-perturpa®e values forx),_q = Az0(0)
are compatible with results by several other groups and, at the curremilglde pion masses,
deviate from the phenomenological valge ~ 0.16. In fig.[ we summarize our results for the
axial one derivative operator.

Extending the present calculation to the other available twisted mass fermiemigles will
be crucial to understand the considerable deviations from experimeatréheurrently observed in
all lattice calculations ofx) and (Ax).
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Figure 3: Renormalization factors in the RI'-MOM scheme at renoraation scaleu (circles). Results
translated to thé1S-scheme at renormalization scal&2V (filled squares) and results with perturbatively
subtracted one looP(a?) artifacts (diamonds). The lines show extrapolationa?p? = 0 using all (solid)
or just the last four points (dashed). The filled trianglg4idrom ref. ].
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Figure 4: The figure shows our results for the generalized form facfegs Bog andCyp calculated at
different pion masses. The solid lines are dipole fits inetlere to guide the eye.
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Figure5: The figure shows the generalized form factdps andByg calculated at different pion masses.
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